Abi Abdallah DS, Fonner CW, Lax NC, Babeji MR, Palé FA. Evaluating the Use of avida-ed digital organisms to teach evolution & natural selection. Am Biol Teach. 2020;82(2):114–9. https://doi.org/10.1525/abt.2020.82.2.114.
Article
Google Scholar
Akçayır M, Akçayır G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ Res Rev. 2017;20:1–11. http://www.sciencedirect.com/science/article/pii/S1747938 × 16300616.
Article
Google Scholar
Andersen SAW, Mikkelsen PT, Konge L, Cayé-Thomasen P, Sørensen MS. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial. Adv Simul Springer. 2016;1(1):20.
Article
Google Scholar
Augusto JC, Callaghan V, Cook D, Kameas A, Satoh I. Intelligent Environments: a manifesto. Human-centric Comput Inf Sci. 2013;3(1):12. https://doi.org/10.1186/2192-1962-3-12.
Article
Google Scholar
Barbot B, Kaufman JC. What makes immersive virtual reality the ultimate empathy machine? Discerning the underlying mechanisms of change. Comput Human Behav. 2020;1:106431.
Article
Google Scholar
Bharathan R, Vali S, Setchell T, Miskry T, Darzi A, Aggarwal R. Psychomotor skills and cognitive load training on a virtual reality laparoscopic simulator for tubal surgery is effective. Eur J Obstet Gynecol Reprod Biol Elsevier. 2013;169(2):347–52.
Article
Google Scholar
Bishop CM. Pattern recognition and machine learning. Jordan M, Kleinberg J, Scholkopf B, editors. Cambridge: Springer Science Business Media; 2006.
Google Scholar
Bonde MT, Makransky G, Wandall J, Larsen MV, Morsing M, Jarmer H, et al. Improving biotech education through gamified laboratory simulations. Nat Biotechnol. 2014;32(7):694–7. https://doi.org/10.1038/nbt.2955.
Article
CAS
PubMed
Google Scholar
Bremer M. SimEarth: the living planet. Ocean Software; 1993.
Brunette ES, Flemmer RC, Flemmer CL. A review of artificial intelligence. 2009 4th Int. Conf. Auton. Robot. Agents. IEEE; 2009. p. 385–92.
Choi S, Kim H-B. Application and Effects of VR-Based Biology Class Reflecting Characteristics of Virtual Reality. J Korean Assoc Sci Educ The Korean Association for Science Education. 2020;40(2):203–16.
Google Scholar
Chouard T. The Go files: AI computer wraps up 4–1 victory against human champion. Nat. News. 2016.
Cummings JJ, Bailenson JN. How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol Taylor Francis. 2016;19(2):272–309.
Article
Google Scholar
Dalgarno B, Lee MJW. What are the learning affordances of 3-D virtual environments? Br J Educ Technol. 2010;41(1):10–32. https://doi.org/10.1111/j.1467-8535.2009.01038.x.
Article
Google Scholar
Davies AG, Crohn NJ, Treadgold LA. Can virtual reality really be used within the lecture theatre? BMJ Simul. Technol. Enhanc. Learn. 2019;5(4):234 LP—235. http://stel.bmj.com/content/5/4/234.abstract.
Davis S, Nesbitt K, Nalivaiko E. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. Proc. 11th Australas. Conf. Interact. Entertain. (IE 2015). 2015. p. 30.
de Jong T, Linn MC, Zacharia ZC. Physical and Virtual Laboratories in Science and Engineering Education. Science (80). 2013;340(6130):305 LP—308. http://science.sciencemag.org/content/340/6130/305.abstract.
Dorneich MC, Whitlow SD, Ververs PM, Rogers WH. Mitigating cognitive bottlenecks via an augmented cognition adaptive system. SMC’03 Conf. Proceedings. 2003 IEEE Int. Conf. Syst. Man Cybern. Conf. Theme-System Secur. Assur. (Cat. No. 03CH37483). IEEE; 2003. p. 937–44.
Dunleavy M, Dede C, Mitchell R. Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J Sci Educ Technol. 2009;18(1):7–22. https://doi.org/10.1007/s10956-008-9119-1.
Article
Google Scholar
Eastwood JL, Sadler TD. Teachers’ implementation of a game-based biotechnology curriculum. Comput Educ. 2013;66:11–24. http://www.sciencedirect.com/science/article/pii/S0360131513000328.
Article
Google Scholar
Edelaar P, Bolnick DI. Appreciating the multiple processes increasing individual or population fitness. Trends Ecol Evol Elsevier. 2019;34(5):435–46.
Article
Google Scholar
Gibney E. Google AI algorithm masters ancient game of Go. Nat News. 2016;529(7587):445.
Article
CAS
Google Scholar
Gochman SR, Morano Lord M, Goyal N, Chow K, Cooper BK, Gray LK, et al. Tarsier Goggles: a virtual reality tool for experiencing the optics of a dark-adapted primate visual system. Evol Educ Outreach. 2019;12(1):9. https://doi.org/10.1186/s12052-019-0101-6.
Article
Google Scholar
Gout L, Hart A, Houze-Cerfon C-H, Sarin R, Ciottone GR, Bounes V. Creating a novel disaster medicine virtual reality training environment. Prehosp Disaster Med. 2020;35(2):25–8.
Article
Google Scholar
Haque S, Srinivasan S. A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Trans Inf Technol Biomed. 2006;10(1):51–8.
Article
PubMed
Google Scholar
Harley JM, Poitras EG, Jarrell A, Duffy MC, Lajoie SP. Comparing virtual and location-based augmented reality mobile learning: emotions and learning outcomes. Educ Technol Res Dev. 2016;64(3):359–88. https://doi.org/10.1007/s11423-015-9420-7.
Article
Google Scholar
Heilig ML. Sensorama simulator. Google Patents; 1962.
Hoffman H, Vu D. Virtual reality: teaching tool of the twenty-first century? Acad. Med. University of California, San Diego, School of Medicine, La Jolla, USA. hhoffman@ucsd.edu; 1997;72(12):1076–81. http://europepmc.org/abstract/MED/9435714.
Horodyskyj LB, Mead C, Belinson Z, Buxner S, Semken S, Anbar AD. Habitable Worlds: Delivering on the Promises of Online Education. Astrobiology Mary Ann 2018;18(1):86–99. https://doi.org/10.1089/ast.2016.1550.
Inglis IR, Langton S, Forkman B, Lazarus J. An information primacy model of exploratory and foraging behaviour. Anim Behav Elsevier. 2001;62(3):543–57.
Article
Google Scholar
Jensen L, Konradsen F. A review of the use of virtual reality head-mounted displays in education and training. Educ Inf Technol Springer. 2018;23(4):1515–29.
Article
Google Scholar
Jerald J, Giokaris P, Woodall D, Hartbolt A, Chandak A, Kuntz S. Developing virtual reality applications with Unity. 2014 IEEE Virtual Real. IEEE; 2014. pp. 1–3.
Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord Springer. 2013;43(1):34–44.
Article
Google Scholar
Karr TL, Brady R. Virtual biology in the CAVE. Trends Genet. 2000;16(5):231–2. https://doi.org/10.1016/S0168-9525(00)01996-X.
Article
CAS
PubMed
Google Scholar
Keizer G. Simlife: life goes on and on and on. Omni General Media International Inc. 1993;15(4):12–3.
Google Scholar
Kish LB. Moore’s law and the energy requirement of computing versus performance. IEEE Proc. - Circuits, Devices Syst. 2004;151(2):190–4.
Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev Springer. 2006;26(3):159–90.
Article
Google Scholar
LaViola JJ Jr. A discussion of cybersickness in virtual environments. ACM Sigchi Bull. ACM New York, NY, USA; 2000;32(1):47–56.
Langton CG. Studying artificial life with cellular automata. Phys D Nonlinear Phenom. 1986;22(1):120–49. http://www.sciencedirect.com/science/article/pii/016727898690237X.
Article
Google Scholar
Langton CG. Artificial life: An overview. Massachussets, USA: Mit Press; 1997.
Google Scholar
Laukkanen S, Karanta I, Kotovirta V, Markkanen J, Rönkkö J. Adding intelligence to virtual reality. Proc. 16th Eur. Conf. Artif. Intell. Citeseer; 2004. p. 1136–41.
Ledermann F, Schmalstieg D. APRIL: a high-level framework for creating augmented reality presentations. IEEE; 2005.
Lehman J, Clune J, Misevic D. The surprising creativity of digital evolution. Artif. Life Conf. Proc. MIT Press; Massachussets, USA, 2018. p. 55–6.
Lindgren R, Tscholl M, Wang S, Johnson E. Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Comput Educ. 2016;95:174–87. http://www.sciencedirect.com/science/article/pii/S036013151630001X.
Article
Google Scholar
Lombart C, Millan E, Normand J-M, Verhulst A, Labbé-Pinlon B, Moreau G. Effects of physical, non-immersive virtual, and immersive virtual store environments on consumers’ perceptions and purchase behavior. Comput Human Behav. 2020;1:106374.
Article
Google Scholar
Luck M, Aylett R. Applying artificial intelligence to virtual reality: Intelligent virtual environments. Appl Artif Intell. 2000;14(1):3–32. https://doi.org/10.1080/088395100117142.
Article
Google Scholar
Makransky G, Terkildsen TS, Mayer RE. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn Instr. 2019;60:225–36.
Article
Google Scholar
Makransky G, Thisgaard MW, Gadegaard H. Virtual simulations as preparation for lab exercises: assessing learning of key laboratory skills in microbiology and improvement of essential non-cognitive skills. PLoS ONE 2016;11(6): e0155895. https://doi.org/10.1371/journal.pone.0155895.
Mazuryk T, Gervautz M. Virtual reality-history, applications, technology and future. Citeseer; 1996.
McCauley ME, Sharkey TJ. Cybersickness. Perception of Self-Motion in Virtual Environments. Presence Teleoperators Virtual Environ. MIT Press, Massachussets; 1992;1(3):pp. 311–8. https://doi.org/10.1162/pres.1992.1.3.311.
Book
Google Scholar
McClean PE, Slator BM, White AR. The Virtual Cell: An Interactive, Virtual Environment for Cell Biology. EdMedia + Innov. Learn. Association for the Advancement of Computing in Education (AACE); 1999. pp. 1442–3.
Mikropoulos TA, Natsis A. Educational virtual environments: A ten-year review of empirical research (1999–2009). Comput Educ. 2011;56(3):769–80. http://www.sciencedirect.com/science/article/pii/S0360131510003052.
Article
Google Scholar
Mikropoulos TA, Katsikis A, Nikolou E, Tsakalis P. Virtual environments in biology teaching. J. Biol. Educ. Routledge; 2003 Sep 1;37(4):176–81. https://doi.org/10.1080/00219266.2003.9655879.
Milgram P, Takemura H, Utsumi A, Kishino F. Augmented reality: a class of displays on the reality-virtuality continuum. Proc.SPIE 1995. https://doi.org/10.1117/12.197321.
Mitchell RS, Michalski JG, Carbonell TM. An artificial intelligence approach. Berlin: Springer; 2013.
Google Scholar
Mittelstaedt J, Wacker J, Stelling D. Effects of display type and motion control on cybersickness in a virtual bike simulator. Displays. 2018;51:43–50.
Article
Google Scholar
Mittelstaedt JM, Wacker J, Stelling D. VR aftereffect and the relation of cybersickness and cognitive performance. Virtual Real. 2019;23(2):143–54.
Article
Google Scholar
Mobbs D, Trimmer PC, Blumstein DT, Dayan P. Foraging for foundations in decision neuroscience: insights from ethology. Nat Rev Neurosci 2018;19(7):419–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moritz E, Meyer J. Interactive 3D protein structure visualization using virtual reality. In: Proceedings. Fourth IEEE Symp. Bioinforma. Bioeng. 2004. p. 503–7.
Naimark M. Elements of real-space imaging: a proposed taxonomy. Stereosc. Displays Appl. II. International Society for Optics and Photonics; 1991. pp. 169–79.
Nugent J. iNaturalist: citizen science for 21st-century naturalists. Sci Scope National Science Teachers Association. 2018;41(7):12.
Google Scholar
Ofria C, Wilke CO. Avida: A software platform for research in computational evolutionary biology. Artif Life. 2004;10(2):191–229.
Article
PubMed
Google Scholar
Ohyama S, Nishiike S, Watanabe H, Matsuoka K, Akizuki H, Takeda N, et al. Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx. 2007;34(3):303–6. http://www.sciencedirect.com/science/article/pii/S0385814607000223.
Article
PubMed
Google Scholar
O’Connor EA, Domingo J. A practical guide, with theoretical underpinnings, for creating effective virtual reality learning environments. J. Educ. Technol. Syst. SAGE Publications Sage CA: Los Angeles, CA; 2017;45(3):343–64.
O’brien WJ, Browman HI, Evans BI. Search strategies of foraging animals. Am Sci. 1990;78(2):152–60.
Google Scholar
Palmisano S, Mursic R, Kim J. Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays. 2017;46:1–8.
Article
Google Scholar
Paxinou E, Panagiotakopoulos CT, Karatrantou A, Kalles D, Sgourou A. Implementation and evaluation of a three-dimensional virtual reality biology lab versus conventional didactic practices in lab experimenting with the photonic microscope. Biochem Mol Biol Educ. 2020;48(1):21–7. https://doi.org/10.1002/bmb.21307.
Article
CAS
PubMed
Google Scholar
Pennock RT. Learning evolution and the nature of science using evolutionary computing and artificial life. McGill J Educ Citeseer. 2007;42(2):211.
Google Scholar
Perry G, Pianka ER. Animal foraging: past, present and future. Trends Ecol Evol. 1997;12(9):360–4.
Article
CAS
PubMed
Google Scholar
Petrović VM. Artificial Intelligence and Virtual Worlds—Toward Human-Level AI Agents. IEEE Access. 2018;6:39976–88.
Article
Google Scholar
Poland R, Velle L, Nichol J. The Virtual Field Station (VFS): using a virtual reality environment for ecological fieldwork in A-Level biological studies—Case Study 3. Br J Educ Technol. 2003;34(2):215–31. https://doi.org/10.1111/1467-8535.00321.
Article
Google Scholar
De Ponti R, Marazzato J, Maresca AM, Rovera F, Carcano G, Ferrario MM. Pre-graduation medical training including virtual reality during COVID-19 pandemic: a report on students’ perception. BMC Med Educ. 2020;20(1):332. https://doi.org/10.1186/s12909-020-02245-8.
Article
PubMed
PubMed Central
Google Scholar
Ray TS. Evolution, complexity, entropy and artificial reality. Phys D Nonlinear Phenom. 1994;75(1):239–63. http://www.sciencedirect.com/science/article/pii/0167278994902860.
Article
Google Scholar
Ray TS, Xu C. Measures of evolvability in Tierra. Artif Life Robot. 2001;5(4):211–4. https://doi.org/10.1007/BF02481504.
Article
Google Scholar
Ray TS. Evolution, ecology and optimization of digital organisms. Citeseer; 1992.
Regan EC, Price KR. The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat. Space. Environ. Med. Aerospace Medical Assn; 1994.
Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, et al. Affective interactions using virtual reality: the link between presence and emotions. Cyber Psychol Behav. 2007;10(1):45–56.
Article
Google Scholar
Robinett W. Synthetic experience: a proposed taxonomy. Presence Teleoperators Virtual Environ 1992;1(2):229–47.
Article
Google Scholar
Russell S, Norvig P. Artificial intelligence: a modern approach. Upper Saddle River New Jersey: Pearson Education; 2002.
Google Scholar
Sadler TD, Romine WL, Menon D, Ferdig RE, Annetta L. Learning Biology Through Innovative Curricula: A Comparison of Game- and Nongame-Based Approaches. Sci. Educ. John Wiley & Sons, Ltd; 2015 Jul 1;99(4):696–720. https://doi.org/10.1002/sce.21171.
Saredakis D, Szpak A, Birckhead B, Keage HAD, Rizzo A, Loetscher T. Factors associated with virtual reality sickness in head-mounted displays: a systematic review and meta-analysis. Front. Hum. Neurosci. Frontiers Media SA; 2020;14.
Serino M, Cordrey K, McLaughlin L, Milanaik RL. Pokémon Go and augmented virtual reality games: a cautionary commentary for parents and pediatricians. Curr Opin Pediatr Wolters Kluwer. 2016;28(5):673–7.
Article
Google Scholar
Shao J, Ray TS. Maintenance of Species Diversity by Predation in the Tierra System. ALife. 2010. p. 533–40.
Sharples S, Cobb S, Moody A, Wilson JR. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays Elsevier. 2008;29(2):58–69.
Article
Google Scholar
Sheridan TB. Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ MIT Press. 1992;1(1):120–6.
Article
Google Scholar
Shim K-C, Park J-S, Kim H-S, Kim J-H, Park Y-C, Ryu H-I. Application of virtual reality technology in biology education. J Biol Educ. 2003;37(2):71–4. https://doi.org/10.1080/00219266.2003.9655854.
Article
Google Scholar
Shim KC, Kim HS, Park YC. Application of Multi-media in Biology Education, Summer Program of Korean Society of Biology Education. null, editor.; 2000.
Singh RP, Javaid M, Kataria R, Tyagi M, Haleem A, Suman R. Significant applications of virtual reality for COVID-19 pandemic. Diabetes Metab Syndr Clin Res Rev Elsevier. 2020;14(4):661–4.
Article
Google Scholar
Slater M. A note on presence terminology. Presence Connect Citeseer. 2003;3(3):1–5.
Google Scholar
Smith JJ, Johnson WR, Lark AM, Mead LS, Wiser MJ, Pennock RT. An Avida-ED digital evolution curriculum for undergraduate biology. Evol Educ Outreach Springer. 2016;9(1):1–11.
Article
Google Scholar
Speth EB, Long TM, Pennock RT, Ebert-May D. Using Avida-ED for teaching and learning about evolution in undergraduate introductory biology courses. Evol Educ Outreach Springer. 2009;2(3):415–28.
Article
Google Scholar
Spicer J, Stratford J. Student perceptions of a virtual field trip to replace a real field trip. J. Comput. Assist. Learn. 2001 Dec 1;17:345–54.
Strickland D, Marcus LM, Mesibov GB, Hogan K. Brief report: Two case studies using virtual reality as a learning tool for autistic children. J Autism Dev Disord Springer. 1996;26(6):651–9.
Article
CAS
Google Scholar
Sulloway FJ. Darwin’s conversion: The Beagle voyage and its aftermath. J Hist Biol Springer. 1982;15(3):325–96.
Article
CAS
Google Scholar
Thearling K, Ray TS. Evolving multi-cellular artificial life. Artif. Life IV. 1994. p. 283–8.
Thisgaard M, Makransky G. Virtual Learning simulations in high school: effects on cognitive and non-cognitive outcomes and implications on the development of STEM academic and career choice. Front Psychol. 2017. https://doi.org/10.3389/fpsyg.2017.00805.
Article
PubMed
PubMed Central
Google Scholar
Veletsianos G. Emerging technologies in distance education. New York: Athabasca University Press; 2010.
Google Scholar
Waldrop MM. The chips are down for Moore’s law. Nat News. 2016;530(7589):144.
Article
CAS
Google Scholar
Wang D, Yang Q, Abdul A, Lim BY. Designing theory-driven user-centric explainable AI. Proc. 2019 CHI Conf. Hum. factors Comput. Syst. 2019. p. 1–15.
Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol. 2019. https://doi.org/10.3389/fpsyg.2019.00158.
Article
PubMed
PubMed Central
Google Scholar
Weng C, Otanga S, Christianto SM, Chu RJ-C. Enhancing students’ biology learning by using augmented reality as a learning supplement. J Educ Comput Res. 2020;58(4):747–70.
Wexelblat A. Virtual reality: applications and explorations. Oxford: Academic Press; 2014.
Google Scholar
Whitelock D, Romano D, Jelfs A, Brna P. Perfect presence: What does this mean for the design of virtual learning environments? Educ. Inf Technol. 2000;5(4):277–89.
Google Scholar
Yoh M-S. The Reality of Virtual Reality. Proc. Seventh Int. Conf. Virtual Syst. Multimed. USA: IEEE Computer Society; 2001. p. 666.
Zhang Z, Cao B, Guo J, Weng D, Liu Y, Wang Y. Inverse Virtual Reality: Intelligence-Driven Mutually Mirrored World. 2018 IEEE Conf. Virtual Real. 3D User Interfaces. 2018. p. 735–6.
Zhu X, Goldberg AB. Introduction to semi-supervised learning. Synth Lect Artif Intell Mach Learn. 2009;3(1):1–130.
Article
Google Scholar
Zsila Á, Orosz G, Bőthe B, Tóth-Király I, Király O, Griffiths M, et al. An empirical study on the motivations underlying augmented reality games: The case of Pokémon Go during and after Pokémon fever. Pers Individ Dif. 2018;133:56–66. http://www.sciencedirect.com/science/article/pii/S0191886917304117.
Article
Google Scholar