Evolution is a deeply unifying theme in biology, to the point that “nothing in biology makes sense except in the light of evolution” (Dobzhansky 1973). Both scientists and science educators affirm the importance of evolution in science education, particularly the understanding of evolution as central to education in biology (American Association for the Advancement of Science 1990; National Academy of Sciences 1999; Sager 2008; Wiles 2010). Despite the overwhelming agreement on and support for evolution among scientists (Alters and Alters 2001; Pew Research Center 2015; Wiles 2011), there is a disconnect between the views of scientists and those of the public regarding the scientific credibility of evolution (Campbell and Daughtrey 2006). In 2014, the Pew Foundation surveyed both scientists and the general public, asking whether “Humans and other living things have evolved over time” or “have existed in their present form since the beginning.” Fully 98 % of scientists surveyed agreed that humans have evolved, while only 65 % of US adults agreed. Most surveys of the general public report that 45–50 % of American adults accept evolution; the recent Pew results are much higher than most studies (Miller et al. 2006; Gallup 2014). Nonetheless, the difference between the almost unanimous agreement among scientists as to the validity of evolution and the considerably lower public support is striking (Pew Research Center 2015).
Not only is there a sharp difference between scientists and the general public, but that difference is not fully appreciated by the public: 29 % of U.S. adults are unaware of the high level of acceptance of evolution in the scientific community, believing that scientists do not agree that humans evolved over time (Pew Research Center 2015). This further illustrates the disconnect between what scientists think and what the general public thinks. To begin to address this problem, it is important to understand how students (including community college students) view this issue.
Much research has been devoted to trying to understand why evolution acceptance is low in the United States. Several factors associated with evolution acceptance or rejection have been identified, including scientific knowledge and understanding, critical thinking skills, social and emotional factors, religious factors, and demographic variables (for a summary and discussion see Wiles and Alters 2011 and Wiles 2014). For example, acceptance of evolution can be positively correlated with level of education, years of education, and college degree attainment (Brumfiel 2005; Gallup 2014; Heddy and Nadelson 2012; Lord and Marino 1993; Pew Research Center 2013). In contrast, religiosity, the degree to which religion is important to people’s lives (Pew Research Center 2008), tends to be negatively correlated with evolution acceptance (Alters and Alters 2001; Downie and Barron 2000; Heddy and Nadelson 2012, 2013; Miller 2008; Rissler et al. 2014; Woods and Scharmann 2001).
Previous studies have explored the views of the general public, high school students, four-year college students, high school teachers, or post-secondary instructors. Students at four-year colleges show a higher acceptance and/or knowledge of evolution compared to the general public (Carter and Wiles 2014; Hokayem and BouJaoude 2008; Wiles and Alters 2011; Winslow et al. 2011), and similarly, pre-college teachers also accept evolution at higher rates than the general public (Deniz and Donnelly 2011; Rutledge and Warden 1999). Based on our literature search, however, there are few studies published that have examined community college student attitudes towards evolution and creationism.
This gap in the literature is a significant omission both because of the large number of community college enrollees and the broad spectrum of the general population represented in these institutions. As of fall 2012, 12.8 million students were enrolled in the 1132 community colleges across the nation (American Association of Community Colleges 2014). The age of community college students stretches across a range from the traditional college starting age of 18 through late adulthood, with 57 % of students being between the ages of 22 and 39 (American Association of Community Colleges 2014).
Community college students also vary greatly in scholastic preparation, and have a wide variety of goals for their post-secondary education, ranging from vocational education to preparation for additional education at the baccalaureate level. Because community colleges serve students pursuing continuing education as well those beginning higher education, community college students may enter with a different level of preparation than traditional 4-year college students. For example, of the 1.5 million students enrolled in community colleges in California in fall 2013, 10 % already possessed bachelor’s degrees, 75.8 % were high school graduates, and 3.3 % were not high school graduates (Education Status Summary Report 2014). In addition, many of these students enrolled seeking certificates rather than degrees (Education Status Summary Report 2014).
There are only a few studies of community college student attitudes towards evolution. McKeachie et al. (2002) examined the effects of taking a biology course on community college student attitudes towards evolution. The researchers administered a pretest (a four question survey) to 60 students in an introductory biology course; 28 of those students completed the posttest survey. At the beginning of the semester, most students stated they did not know enough about evolution or the Bible to accept either. At the end of the course, students reported changes in the direction of acceptance of evolution; however, McKeachie et al. (2002) suggested this result was biased because a disproportionate number of the students who either failed to complete the posttest or dropped the class were those who did not accept evolution. In any case, the small sample size of this study limits the generalizability of the results.
Flower (2006) surveyed 342 students in both majors and nonmajors biology classes at a community college with regard to their attitudes towards evolution and creationism. Of the nonmajors students (n = 242), 58 % felt that evolution was scientific and well supported by evidence while 49 % acknowledged that species (including humans) evolved from earlier species. A large proportion of the majors’ biology students (73 %, n = 70) agreed that evolution was well supported by evidence and 57 % agreed that all species evolved from earlier species. The results of this study (and other studies not reported here) suggest that students who are enrolled in majors biology courses have a higher rate of acceptance and/or understanding of evolution than those who are enrolled in nonmajors courses.
For many students, a 2-year college is the first (and sometimes the last) place that they will learn about evolution in a formal learning environment. The relative lack of research on community college students’ attitudes towards evolution and their distinctiveness among post-secondary students suggest that it is important to attain a better understanding of their views. This led us to our first research question: what are community college students’ attitudes towards evolution? Based on characteristics of the community college student universe, as well as the extant studies on community college student attitudes towards evolution, we hypothesized that community college student attitudes towards evolution will closely mirror that of the general public.
We also wanted to compare the perceptions of students’ attitudes towards evolution held by community college instructors of life sciences courses with those students’ actual attitudes towards evolution. How accurately do community college professors perceive/predict their students’ attitudes towards evolution?
Research suggests distinct differences between how faculty and students perceive evolution. Paz-y-Miño’s and Espinosa’s (2011) comprehensive survey of both students and faculty at universities and colleges throughout New England predictably found that significantly more faculty accepted evolution than students. Those researchers also found that students typically have a poor understanding of the science behind evolution.
Are professors aware of differences between their acceptance of evolution and that of their students? This question does not seem to have been answered in the literature. The authors could find no studies specifically examining professor perceptions of students’ acceptance of evolution or any other scientific concept. Yet it seems indisputable that education is more effective when professors and teachers (for the purposes of this study, we refer to instructors of K-12 students as ‘teachers’ and those at the college level as ‘professors’) have a clear and accurate understanding of students’ knowledge and attitudes towards the subject. Larkin (2012) studied 14 preservice science teachers and found they all recognized the importance of student knowledge and attitudes (including misconceptions) in the learning process. An instructor might approach the learning process differently if they were aware of students holding a high level of antipathy towards a subject. In the case of evolution, in such a situation, a teacher or professor might consider spending more time on placing evolution within the context of biology as a whole, explaining easily observed examples (e.g., the evolution of antibiotic resistant bacteria), or focusing on evolution’s power to explain diversity of nonhuman life on the planet before moving onto the more controversial topic of human evolution.
Lacking evidence of research on the matter of instructor perception of student knowledge and opinions on evolution, we broadened the scope of our review of the literature to include any studies we could find that looked at pre-college teacher or professor perception of any scientific concept in relation to student perception of said scientific concept or performance. More research has been conducted on teacher vs. student understandings than on professor vs. students, and most of the studies indicate a disconnect between the people in front of and behind the podium as to what is happening in the classroom.
For example, Slatter (2009) found that secondary school teachers perceived that they were implementing more critical thinking in their science classes than the students perceived. Another study found that teachers and their tenth grade students perceived their learning environments differently and suggested that understanding this disparity in perception is essential for creating optimal learning environments (Könings et al. 2014).
Student and teacher perceptions of scientific material do not always align well. For example, Şahin and Köksal (2010) examined ninth graders’ and teachers’ perceptions of the nature of science and found that many areas of misunderstanding were shared by both students and teachers. Additionally, students and teachers did not agree on the importance of understanding the nature of science; students ranked other types of science knowledge as more important than understanding the nature of science while teachers reported the opposite.
The differences between what teachers think and what students think is exemplified further by a study which explored student and teacher perceptions of the amount of emphasis of evolution in high school biology classes. Moore (2007) surveyed first-year college students and public high school biology teachers, and found that teachers and students had different perceptions of how much evolution was emphasized in high school: students remember much less emphasis on evolution and more emphasis on creationism than teachers reported. It is important to note, however, that in this study, the students surveyed were not the actual students of the teachers surveyed, merely a representative sample within the state of Minnesota.
In an additional study, Sadler et al. (2013) assessed eighth grade students’ understandings of specific science standards and asked teachers to predict how well their students would perform. On the standard addressing the statement “Species diversity arises from evolution,” teachers predicted that students would perform nearly twice as well as they actually did. These results suggest a disconnect between what teachers think their students know about evolution and what students actually know.
Given that there often is a disconnect between teachers’ perception of classroom learning and actual learning, we would not be surprised to find that the community college professors we surveyed similarly had incorrect perceptions of student acceptance of evolution. Post-secondary instructors spend less time with students than high school teachers and thus have less opportunity than high school teachers to develop personal relationships with students and the increased communication such relationships encourage. But the dearth of research on this topic suggests our contribution to this question at this point should be descriptive: how accurate are community college faculty perceptions of student acceptance of evolution? Our results could suggest more specific hypotheses for further research.