Students often enter college biology courses with strongly held scientific misconceptions that interfere with their ability to understand accurate explanations. Therefore, one of the major goals in biology education is to help students engage in conceptual change; however, student conceptual change is difficult to accomplish, especially when students are learning about evolutionary theory (Bishop and Anderson 1990; Rutledge and Warden 2000). One of the common ways of teaching evolution theory is to discuss Darwin’s voyage and the evidence he observed as integral to building the concept of evolution theory; however, often even well-designed lessons are not sufficient to help students undergo conceptual change. As a result, students often complete biology courses holding the same misconceptions they had prior to taking the course, even after numerous biology courses (Bishop and Anderson 1990).
Recently, researchers have begun to examine role of individuals’ affective characteristics such as epistemological beliefs on ability of students to undergo conceptual change (Sahin 2010; Stathopoulou and Vosniadou 2007). Sahin (2010) discovered that the ability of students to understand physics concepts was significantly related to their beliefs about physics and physics learning. Likewise, Stathopoulou and Vosniadou (2007) found students’ epistemological beliefs about physics was a strong predictor of their understanding of physics, and that commonly students’ epistemological beliefs are related to conceptual understanding about science; however, few studies have been conducted in biology to investigate the relationships between epistemological beliefs and conceptual change. Because students’ epistemological beliefs are domain specific, more research is necessary to understand the role of epistemological beliefs in biology—in particular, evolution theory.
Research on epistemological beliefs started from Perry’s research (1970) and has continuously expanded its interests into diverse areas including learning strategies, motivation, and conceptual change. Despite of decades of research efforts, there is still lack of agreement among educators of different disciplines (e.g., educational psychologists and science researchers) when it comes to defining epistemological beliefs. Educational psychologists define epistemological beliefs as personal beliefs about knowledge and knowing (Hofer and Pintrich 1997; Shommer-Aikins 2004). Science educators, on the other hand, describe epistemological beliefs as the Nature of Science (NOS), which are context-specific beliefs about knowledge and knowing of science. The lack of interaction between the two disciplines may cause confusion to researchers or educators who are interested in the relationships between epistemological beliefs and conceptual change in science, and no research has been conducted to investigate the relationship between epistemological beliefs and conceptual change by using both disciplinary perspectives. Therefore, in this study, we explored for the first time the relationships among epistemological beliefs, nature of science, and conceptual change.
Epistemological Beliefs from Educational Psychologists’ Perspective
Research on epistemological beliefs was initiated by Perry (1970). He found that students do have strong beliefs about knowing and knowledge but they can change over time. Perry (1970) argued that students entering college perceive knowledge to be simple, certain, and provided by the instructor; however, upon graduation, the same students often hold more sophisticated beliefs, viewing knowledge as complex, tentative, and derived from reason and observation.
Since Perry’s research, perhaps one of the most influential studies in epistemological beliefs was conducted by Schommer (1990). Schommer suggested that students’ epistemological beliefs consist of a collection of more or less orthogonal beliefs. She made the case that students’ epistemological beliefs have diverse dimensions that are in a continuum from less to more sophisticated, and that the beliefs are developed from novice to sophisticated level. Schommer suggested five theoretical dimensions of epistemological beliefs: (1) the structure of knowledge (from simple to complex nature of knowledge), (2) the stability of knowledge (from factual to constantly changing nature of knowledge), (3) the source of knowledge (from omniscient source to empirically evidenced-based nature of knowledge), (4) the speed of learning (from quick to gradual nature of learning), and (5) the ability to learn (from fixed or innate to incremental nature of ability). Using exploratory factor analyses, Schommer found support for these dimensions of epistemological belief, with the exception of the source of knowledge (3). Although there are still ongoing debates about the dimensions of epistemological beliefs (Hofer and Pintrich 1997), Schommer’s dimensions are commonly accepted among educational psychologists. In an attempt to more fully understand the dimensions of epistemological beliefs, Bendixen et al. (1998) extracted items from the research of Schommer and generated new items. They found five dimensions of epistemological beliefs that they identified as (1) certain knowledge, (2) simple knowledge, (3) omniscient authority, (4) quick learning, and (5) innate ability. Certain knowledge beliefs are held by students that view knowledge as certain or absolute rather than tentative. Students who have simple knowledge beliefs view knowledge as simple rather than contextual and contingent. Omniscient authority depicts knowledge as coming from “out of self,” such as from textbook or teachers, rather than coming from interactions with others. Quick learning explains whether students view learning as occurring quickly rather than gradually, and innate ability describes intelligence or learning ability as innate and therefore effort does not make any difference.
Nature of Science from Science Researchers’ Perspective
Nature of science is the common name used by science researchers to describe epistemological beliefs in science contexts. NOS addresses multiple issues related to the philosophical assumptions of science (Smith and Wenk 2006), including: values, development, conceptual inventions, development of consensus within the scientific community, and unique characteristics of scientific knowledge (Lederman 1992; Tsai 2007).
Perhaps the definition of NOS developed by Lederman (1992) is most widely used. Lederman (1992) defined the phrase “Nature of Science” as a way of knowing or the values and beliefs that are inherent to the development of scientific knowledge; however, there is a lack of consensus among philosophers, historians, and sociologists of science on what actually constitutes NOS (Abd-El-Khalick 2005; Abd-El-Khalick and Lederman 2000; Alters 1997; Clough and Olson 2008; Osborne et al. 2003). Osborne et al. (2003) cite research findings by Alters (1997) to provide an empirical basis for the lack of consensus about NOS. Alters (1997) surveyed 217 members of the U.S. Philosophy of Science Association, and his interpretation of the 187 responses indicated no single account of NOS existed among study participants. Science educators often reference NOS as a means of explaining what science is, how it works, and how scientists function (Clough and Olson 2008). Abd-El-Khalick (2005) reports science educators often have different conceptions of NOS and what should be presented to students.
There appears to be a level of generality, although not complete agreement, regarding certain aspects of NOS (AAAS 1993; Abd-El-Khalick 1998, 2005; NRC 1996; Smith et al. 1997). The general aspects of NOS are described as four aspects of science. These general aspects of NOS include perceptions of scientific knowledge as: (a) tentative and, as such, subject to change; (b) supported by, based upon, or derived from empirical evidence resulting from observations of the natural world; (c) described as theory-laden with explanations derived in part from human inference, imagination, and creativity; (d) influenced by social and cultural aspects of society (AAAS 1993; Abd-El-Khalick 1998, 2005; Lederman 1992; NRC 1996; Smith et al. 1997). Each of these four dimensions warrants further discussions.
Empirical Nature of Science
The empirical nature of science refers to the manner in which new scientific knowledge is generated, validated, and accepted by the scientific community. Science is described as a way of knowing that demands evidence for validation and acceptance among members of the scientific community (AAAS 1993; Lederman 1992). Abd-El-Khalick (2005) posits scientific knowledge is generated through “critical, negotiated, and collaborative inquiries that are propelled by scientists’ imaginations and bound only by their observations of the natural world” (p. 17). Hence, scientific knowledge is usually characterized as knowledge derived from or based upon observations of the natural world; as a result, science demands that claims are backed with evidence that can be confirmed through scientific inquiry and supported with logical argument (AAAS 1993; Abd-El-Khalick and Lederman 2000). Evidence to support scientific knowledge is filtered through scientists’ perception of their observations and also through intricate instrumentation with data analysis and interpretation guided by elaborate theoretical frameworks. Therefore, science is unique compared to other ways of knowing because scientific knowledge is based upon empirical evidence filtered by human interpretation (Lederman 1992).
Scientific Theories and Laws
Because science is a human endeavor, it is ultimately dependent upon individual or group interpretation and, therefore, described as theory-laden (Abd-El-Khalick and Lederman 2000). Making sense of observations of phenomena is accomplished through the development of explanations that are consistent with existing scientific knowledge and principles; such explanations are referenced as theories (AAAS 1993). Theories are overarching explanations of the natural world. Theories are typically inferred and explain the relationship between observations of multiple phenomena, most of which are not directly observable or testable (Lederman et al. 2002). An example would be the kinetic molecular theory. This theory explains that all matter is composed of small particles and describes the relationship between those particles within the context of solids, liquids, and gases. This theory can also explain rates of diffusion, chemical reactions as well as other phenomena related to changes in matter resulting from kinetic energy and energy transfer (Abd-El-Khalick et al. 2001). Laws, in contrast, are described by Lederman et al. (2002) as “descriptive statements of relationships among observable phenomena” (p. 500). Therefore, it is important to note that theories and laws are different types of knowledge and that theories do not become laws over time (Abd-El-Khalick et al. 2001). In summary, scientific theories offer strong evidence for explanations of phenomena never directly observed; theories are tentative and undergo elaboration and modification with new understanding of science (Wong and Hodson 2009).
Social and Cultural Embeddedness
Science is a human effort; and, as such, it is influenced by the context of social and cultural views of scientists and the culture in which the research is conducted (Abd-El-Khalick and Lederman 2000; Lederman 1992; Lederman et al. 2002). Lederman et al. (2002) defined naïve views of the cultural influence upon the nature of science as the belief that science could not be influenced by culture or society and the more informed view as an understanding of the influence of societal and cultural factors upon the acceptance of scientific ideas.
Tentative Nature of Science
Science is different from other ways of knowing because science relies upon observations of the natural world, demands supporting evidence, and encourages skepticism. Scientific knowledge, even though durable, is also tentative and subject to change within the context of new technologies and interpretations (Lederman et al. 2002). Popper (1963) posited that scientific hypotheses, theories, and laws can never be absolutely proven, regardless of the existence of supporting empirical evidence. Kuhn (1962) describes scientific revolutions as occurring when existing theories are no longer perceived to be satisfactory explanations and this dissatisfaction with existing theory drives scientific thinking and research, ultimately resulting in the formation of new theories. Wong and Hodson (2009) found that scientists subscribed to the belief that both theories and laws are subject to change as new knowledge of the phenomena is gained with the introduction and application of new technologies. Hence, scientific knowledge is far from absolute and will continually to be modified and elaborated upon as new understandings of phenomena are realized.
Research Purpose
The overarching purpose of this research was to investigate the relationship between college students’ epistemological beliefs and their views on the nature of science. We also explored for the first time the relationships among epistemological beliefs, NOS, and conceptual change while learning about evolutionary theory. The questions that guided this study were:
-
What are, if any, the relationships between epistemological beliefs and nature of science?
-
What are, if any, the relationships between epistemological beliefs and conceptual change in evolutionary theory?
-
What are the relationships between nature of science and conceptual change in the evolutionary theory?