Based on our previous epistemological and psychological analyses, we propose that the main educational objective is students’ development of metacognitive vigilance on teleological obstacles. From a pedagogical perspective, our proposal is based on two main theoretical frameworks: epistemological obstacles (Astolfi 1997a) and metacognition (Peña Ayala 2015; Zohar and Dori 2012). The latter framework is closely related to that of self-regulated learning (Boekaerts 1999; Zimmerman 2000; Schraw et al. 2006). In the following sections, we briefly develop these theoretical frameworks and apply them to the case at hand.
Teleological thinking as an epistemological obstacle
In other works (González Galli and Meinardi 2011, 2015), we have characterized teleological thinking as an epistemological obstacle (Astolfi 1997a; Astolfi and Develay 1989). This concept seems particularly appropriate to consider the nature and function of teleological thinking from a teaching perspective. As noted in the Introduction, epistemological obstacles are transversal and functional styles of reasoning that constitute possible sources of difficulty in learning specific content. Nevertheless, authors who developed this theoretical framework state that obstacles are ambiguous (Astolfi 1997b). This ambiguity is generated from styles of reasoning that allow and encourage thinking about a specific topic (a positive effect) but, at the same time, bias and limit thinking (a potentially negative effect). Thus, in contrast to what the term “obstacle” suggests, its cognitive function is not purely negative.
In relation to negative aspects, the teleological obstacle may lead to misconceptions about evolution. Thus, for example, students tend to think that the production of genetic variations is geared toward producing adaptive changes. In the same vein, they may believe that the evolutionary process as a whole follows predetermined paths. Some students might even think that there is some form of intentionality involved in the evolutionary process.
However, and this is perhaps less obvious, the teleological obstacle has positive effects in relation to learning the theory of natural selection. Specifically, the teleological obstacle gives rise to intuitions that, according to Ruse (2000, 2003, 2008) and Dennett (1995, 1989, 2017), are essential to explain adaptations employing the natural selection theory. In this sense, teleological reasoning suggests questions such as, “How does having those colors benefit the butterfly? Is it that it allows it to camouflage with the surroundings and avoid predators?” These questions and their possible answers are clearly teleological. Nonetheless, this is how scientific hypotheses are generated in the adaptationist program. Then, similar to biologists, students create an explanation of how the trait being analyzed evolved, which must be coherent with scientific theory. Furthermore, to the extent that they focus on the study of the theory of evolution, students should be able to understand teleological questions such as, “How does trait X benefit its holder?” This question could be answered, “In no way”, given that the trait being analyzed might not be a product of natural selection. In other words, part of the metacognitive ability of an advanced student would include knowledge that teleological reasoning and language should be restricted to those cases in which one decides to adopt an adaptationist approach.
Metacognition and self-regulated learning: the development of “metacognitive vigilance” on teleological thinking
Although there is no single definition of metacognition (see, Gunstone and Mitchell 2005; Hacker et al. 2009; Peña-Ayala and Cárdenas 2015; Veenman 2012; Zohar and Barzilai 2013; Zohar and Dori 2012), it can be defined as the subject’s knowledge and control over his or her thinking and learning (Cross and Paris 1988). There is usually a differentiation between metacognitive knowledge and metacognitive regulation (Dye and Stanton 2017; Schraw et al. 2006). While metacognitive knowledge refers to what we know about our thinking, metacognitive regulation refers to how we control our thinking and learning. More specifically, metacognitive knowledge would be declarative knowledge about the interrelationships between the subject, the task to be performed, and the strategies to be used. Metacognitive regulation would include the ability to monitor, guide, control and manage one’s learning and behavior during the problem solving (Veenman 2012). The relationships between the two components of metacognition (knowledge and regulation) are complex, and evidence suggests that the possession of knowledge does not guarantee the ability to regulate cognition.
As we have already pointed out, the metacognition framework is closely related to that of self-regulated learning (Boekaerts 1999; Schraw et al. 2006). The latter suggests that the subject becomes a self-regulated learner through a gradual process that involves four levels: observational (focused on modeling), imitative (focused on social orientation and feedback), self-controlled (focused on building internal standards of what is an acceptable performance and development based on these standards) and self-regulated (focused on the subject’s strong beliefs about self-efficacy and rich repertoire of cognitive strategies that allow self-regulation of learning). Thus, this development implies a passage from performance strongly supported by external social factors to performance based on internal cognitive tools (Schraw et al. 2006). According to Schraw et al. 2006, self-regulated learning has three components: cognition, metacognition and motivation. Cognition refers to the abilities to encode, store and retrieve information. Metacognition refers to the subject’s ability to understand and monitor his or her cognitive processes, and motivation is related to beliefs and attitudes that affect the use and development of cognition and metacognition. Another aspect of self-regulated learning that is important for our proposal is that the subject must perceive that there are different alternatives to choose from (Boekaerts 1999), in our case, in relation to the type of explanations that can be constructed to account for a biological phenomenon.
In the teaching approach that we propose, the aim would not be for students to completely abandon the use of teleology but rather to be able to use it properly, as biologists do, and to consciously regulate the use this type of reasoning as much as possible. Students should be able to depend on natural selection theory to assess which teleological explanations and expressions are acceptable and which are not. In this sense, for instance, it could be considered that the phrase “gazelles evolved in order to be faster and thus avoid their predators” could, under a specific interpretation, be acceptable, whereas the statement “gazelles mutated to become faster” would never be acceptable. The former expression is ambiguous and could be expressing a mistaken idea (suggesting that the genetic variation needed was directionally caused) or a correct idea (suggesting the reason why the fastest variant increased its population frequency). Those readers who deem the first expression unacceptable should remember that these types of expressions are used frequently by professional biologists and, as we have shown, can be found in university textbooks.
In any case, we consider the censorship of teleological language in the classroom does not facilitate the learning process (Zohar and Ginossar 1998). There is broad consensus on the need for students to make their ideas explicit in class. This is a necessary condition for the conceptual review required for the learning of scientific theories. Therefore, the censorship of teleological thinking (which generally translates into the expression “‘don’t say ‘in order to’”) tends to hide what students think, hindering their learning experience. Our proposal focuses on generating frequent instances of explicit discussion about the meaning of teleological expressions that arise in class. These discussions provide the framework in which a theory (the theory of natural selection, in this case) can be reviewed to discuss which expressions are acceptable and which are not.
A general proposal to address the problem of teleology in the teaching of evolutionary biology
The primary learning aim of our proposal is for students to gain awareness of their own teleological biases and develop a specific ability for the regulation of that aspect of their cognition. Therefore, the goal is related to promoting the development of students’ metacognitive knowledge and regulation, i.e., their performance as self-regulated learners, in connection with the teleological obstacle. To accomplish this, the literature on epistemological obstacles provides useful suggestions consistent with the frameworks of metacognition and self-regulated learning.
According to Astolfi and Peterfalvi (1997), some essential aspects of educational work are (a) the destabilization of the obstacle, (b) alternative (re)construction, and (c) identification. Destabilization refers to the process of students becoming aware of the obstacle’s limitations through the use of resources, such as contrasting conflicting empirical evidence. The so-called sociocognitive conflict that arises from noticing the coexistence of multiple points of view, which are sometimes mutually exclusive, also contributes to weakening students’ confidence in the obstacle. For example, in the case of teleological reasoning and learning the theory of natural selection, the fact that the frequency of occurrence of a mutation is independent of whether the mutation has positive or negative effects for the organism could contribute to reducing the student’s confidence in teleological reasoning (see Kampourakis 2014 for other suggestions in this line). Alternative (re)construction refers to the contribution by the teacher of an alternative explanatory framework concerning the obstacle that proves to be more coherent than the student’s scientific perspective. Continuing with the previous example, this conceptual (re)construction would involve the student constructing an explanatory model more similar to the theory of natural selection that, among other things, would include a recognition of the role of chance in the emergence of heritable variants. Although we do not explore this question in more depth due to space limitations, we suggest that the theoretical framework of modeling offers a particularly useful perspective for thinking about how to carry out this conceptual reconstruction (see Svoboda and Passmore 2013). Identification refers to students’ ability to recognize what the obstacle is and its multiple expressions (that is, the specific conceptions based on the obstacle, such as the idea of adaptative individual transformation).
It is necessary to clarify that the three aspects of the didactic work on epistemological obstacles (destabilization, conceptual reconstruction, and identification) do not represent three sequential steps of a linear process. Although there is a certain temporal logic (for example, students often begin by favoring the explicitness and destabilization of the obstacle), the three aspects interact continuously. For example, a new concept such as “random character of mutation” becomes a conceptual tool that allows a student to revise his or her conceptions, including the teleological obstacle, from a new perspective.
Aspects (a) and (b) greatly converge with what is proposed in the theoretical framework of conceptual change (Strike and Posner 1992; Vosniadou 2008). Given the recognition that obstacles never disappear (Astolfi 1997b) (statement consistent with the analysis of cognitive psychology, according to which teleological bias is an important functional aspect of normal cognition), the focus of the teaching proposal shifts from the intention of eliminating teleological reasoning to regulating it through metacognition. Although some models of conceptual change place great importance on metacognition (see Gunstone and Mitchell 2005 and Sinatra and Pintrich 2003), in general, they preserve the “eliminationist” objective that we renounce.
It is important to note that the students’ initial model consists of a set of related conceptions (individual transformation, inheritance of acquired characteristics, etc.) about evolution. Some of them involve incorrect forms of teleology. According to our proposal, teleology (in its broadest sense) is an aspect that will be present in both the initial and final models, as well as in the scientific reference model (natural selection). The objective is then a transformation (not a total replacement) of the initial model towards one closer to the scientific one, which implies both the abandonment of some specific conceptions and, eventually, the permanence of others. As we pointed out, in any case, some form of teleology will always persist. In this sense, for the students, one of the goals of “destabilization” is to question unacceptable forms of teleology. Later we point some criteria for distinguishing acceptable and unacceptable forms of teleology.
The main objective would then be for students to develop metacognitive vigilance of the obstacle. Being able to perform such “vigilance” involves (1) being aware of the teleological reasoning, i.e., knowing what this type of reasoning is; (2) being able to identify teleological reasoning, i.e., recognize the multiple expressions of teleological reasoning, which are not always evident; and (3) regulating the obstacle based on a theory, i.e., restricting the use of teleological reasoning by assessing the acceptability of each case with the theory of natural selection as a reference. Thus, the development of these skills represents three key goals of teaching. It is worth mentioning that these skills are not independent: it is not possible to identify expressions of teleological thinking (2) without knowing about the form of thought (1). Likewise, regulating the use of teleological reasoning (3) is not possible if one is unable to identify its expressions (2). Exercising this vigilance would imply both metacognitive knowledge (aspect 1) and metacognitive regulation (aspects 2 and 3). Therefore, it is an ambitious learning goal that requires hard, long-term work.
As we have mentioned, we suggest that the criterion for determining the acceptability (or unacceptability) of a given teleological expression should be its coherence (or incoherence) with the reference scientific theory (in this case, the theory of natural selection). When the topic discussed in class relates to the evolutionary explanation of adaptations, this criterion would imply that expressions for which teleological reasoning relates to the reasons why the variant of the observed trait was selected would be acceptable. Thus, for example, the expression “white bears were selected in the Artic because that color serves to help them blend in with the environment” could be considered acceptable, even though it is teleological. This idea could also be expressed in the form: the white fur “has the function to help them to blend in with the environment”. Since, as we explain later, we consider that the notion of function is itself teleological (McLaughlin 2003) and this last expression would imply an acceptable form of teleology. On the other hand, expressions that relate teleological reasoning with the origin of the variants or with the evolutionary process as a whole should be considered erroneous. Thus, expressions such as “in the arctic, bears mutate to camouflage” would be considered erroneous. Another form of teleology that is unacceptable is assuming that the evolutionary process as a whole follows predetermined directions. In this sense, the idea that the appearance of certain species (typically the human being) is an inevitable result of evolution is an unacceptable form of teleology. Finally, in any of these cases, the student could assume that there is a certain intentionality involved in the evolutionary process, which should always be considered unacceptable because intentionality is not part of the reference theory (natural selection). In summary, adopting consistency with the theory of natural selection as the ultimate criterion of acceptability, we suggest the following general scheme to distinguish acceptable forms of teleology from those that are not:
Acceptable forms of teleology.
Unacceptable forms of teleology.
Any teleological expression that refers to the inheritable variants appears with a purpose associated with the adjustment of the organism to the environment or its survival.
Any teleological expression that refers to a predetermined direction in the evolutionary process as a whole.
Any teleological expression that supposes some form of intentionality guiding the evolutionary process.
It is necessary to point out that the teleological notion of “necessity”, frequently indicated as intrinsically incorrect, could appear in any of the mentioned cases (both in the acceptable and in the not acceptable).
The main idea that we defend here is that the recognition that certain forms of teleology persist in biology forces to distinguish the different forms of teleology and to establish an acceptability criterion. The categorization just outlined is not, of course, the only possible one. The distinction made by Kampourakis (2020) between “design teleology” and “natural selection teleology”–which we have already mentioned- can also function as an adequate theoretical reference to distinguish between acceptable and unacceptable forms of teleology. Lastly, we must not lose sight of the fact that linguistic expressions are usually ambiguous and that, therefore, many times the expressions of the students cannot be considered immediately correct or incorrect. Thus, it will often be necessary to ask students to clarify what they meant by this or that expression, which will help students become aware of the need to express themselves accurately”.
Guidelines for the design of activities based on our proposal
Here, we offer some guidelines and suggestions on the kinds of activities that can be implemented to address the three proposed objectives. Of course, a teacher will only be able to guide this learning process for his or her students if he or she has previously experienced the process. Thus, versions adjusted to the corresponding educational level of this type of activity can be used both in the teaching of biology in secondary school and in teacher education programs so that future teachers have a high degree of understanding of what teleology is and how to teach evolution (or biology in general) so that students’ teleological intuition does not hinder the process.
Regarding the first aim (knowing what teleological reasoning is), it is generally necessary for the teacher to introduce the concept of teleology with a simple definition and some pragmatic, clear and self-evident examples. We suggest using a broad definition to capture and discuss the great diversity of related notions associated with teleology (purpose, goal, objective, function, etc.). In this sense, it could be agreed in the class that all the arguments that imply any of these notions will be considered teleological. We believe that it is better to adopt a broad definition of this style and not a more technical and restricted definition, for example, one according to which only those explanations that imply intentionality will be considered teleological. A definition that is too limited could set aside some notions, such as “function,” whose teleological character may not be evident, but which would still be important to analyze.
Regarding the problem of which definition of teleology to adopt in class, we suggest that it might be useful to offer students a list of keywords that function as indicators of teleological reasoning. These terms would include “end”, “goal”, “aim”, “purpose”, “need”, “utility” and “function”. However, in addition, taking up Ruse’s analysis, it might be useful to propose that students reflect on their own thoughts to detect when they are thinking about organisms or their parts as if they were design objects. Finally, students must understand that language is ambiguous and that interpretations depend on context (for example, we can allow ourselves to use certain teleological expressions that abbreviate speech when we know that the public has a background knowledge that will allow them to avoid misinterpretations, while in other cases we will have to be more careful with our language), so in class, there must be a climate that encourages the expression of implicit ideas and discussion of the meaning and scientific adequacy of any ambiguous expression (the discussion of the scientific adequacy of a specific teleological expression is directly linked to the third objective: the regulation of the obstacle).
In relation to the second aim (identification), it is useful to propose that students identify other examples of teleology in different contexts, such as texts, movies, and documentaries. It is important to discuss examples related to different topics with students, which will help them to abstract the concept beyond specific examples. Expressions such as “John got up early to see the sunrise”, “flowers produce a scent in order to attract pollinators” and “dolphins have a hydrodynamic form to swim better” are clear examples of teleology concerning very different subjects. It is also very useful to analyze historical sources, such as the writings of Darwin, who frequently resorted to teleological language and explicitly defended its use (see Lennox 1993), arguing its metaphorical nature (a detailed proposal on how to work from this case can be seen in González Galli 2014). It is also convenient for the teacher to provide examples that become gradually more complex, where the teleological assumption is less explicit and evident. For instance, let us consider the following expressions: (a) “the bacteria mutated because they aimed to become resistant to the antibiotic,” (b) “the bacteria mutated to become resistant to the antibiotic,” and (c) “the bacteria mutated because otherwise, the antibiotic would have killed them”. All three expressions are teleological and, in this case, scientifically incorrect. However, the teleological nature of these expressions is not equally clear for someone who has yet to develop a clear concept of teleology. In case (a), there is an explicit reference to an objective, while in cases (b) and (c), the objective is implicit, being less evident in (c) than in (b).
The third objective (regulation) implies that students are able to identify teleology in their own reasoning and productions, as well as in that of other people. In all cases, students should also be able to assess the scientific adequacy of the identified forms of teleology. To develop this ability, it is necessary to increase the number of occasions in which it is discussed why a particular expression is acceptable or not. When students become involved in this type of analysis, they not only learn what teleology is but also improve their understanding of the theory. This is because discussing whether a given expression is consistent with the theory forces students to discuss what exactly the theory says about the world.
To facilitate vigilance of teleological obstacles, it may be useful to use external elements of symbolic support. An example of this type of support is a poster hanging on the walls of the classroom with a phrase such as “Beware of teleology!” These symbolic objects help students be more attentive towards the appearance of obstacles in different moments of the class and facilitate recurring discussions on the subject (Astolfi and Peterfalvi 1997).