This course was taught in the spring of 2012 to 10 senior biology students from the University of Panama (UP), Republic of Panama. Even though biology students of the UP take standard coursework in biological sciences (e.g. general biology, chemistry, botany, zoology, ecology, physiology, evolution, genetics, etc.), as well as alternative classes in specialized subjects (e.g. vertebrates, invertebrates, tropical ecology, geography, histology, etc.), they lack any paleontology background, as this discipline is not formally taught either in the UP, or any university in the country. This is also the case throughout much of Latin America. Paradoxically, Panama has a great potential for the study of paleontology because it preserves a fossil record that captures key moments in the history of ancient biodiversity. Additionally, the construction, and most recently, the widening of the Panama Canal has attracted a diverse array of investigators who are conducting exciting research projects along paleontological sites (Kays 2014). This paradox inspired the instructor—who is one of the researchers working in the area—to focus the course on Panama in order to arouse students’ curiosity using a relevant topic, hoping it would engage them with the field of paleontology.
The course was taught in the facilities of the Smithsonian Tropical Research Institution (STRI), where most of the scientific research in Panama is done, and where the infrastructure for a blended course was provided (e.g. classrooms with Polycom® videoconference system and multimedia equipment; and a library with computers and Internet access). Students ranged from 20 to 22 years of age and included six females and four males. They were required to have completed all coursework for the third year to sign up for this class (i.e. general biology, chemistry, physics, botany, zoology, mathematics, microbiology, statistics, general ecology, genetics, evolution and physiology). The course was taught for 16 weeks, with one session of 3 h/credits per week. It consisted of four main sections covering different objectives (Fig. 3) and included two field trips. All students had computer access in both the UP and STRI, and most of them also had a computer at home. The course was completely (i.e., all assignments, lectures and activities) taught in Spanish; however, most of the readings were in English (see legend for Fig. 4).
Introduction (Two Sessions)
The first session of the course (Fig. 4) consisted of phases (B–D). During the face-to-face activity (phase B) students introduced themselves. Then they learned about the technologies to be used (e.g. wikis and blogs) in the class by watching tutorial videos on Youtube. In addition, they were engaged in a virtual tour via Google Earth of the areas to be studied during the course. These demonstrations engaged students by promoting enthusiasm for the subject, and by helping them get a closer look at their environment using technology. Students seemed surprised to learn about the learning potential of these media and were excited to be able to use it for the class. All of them learned about wikis for the very first time in this course.
Between this and the next face-to-face session (phase C), students read an introductory article on the paleontology of Panama (Fig. 4). This was the only article they read in Spanish. They also started a blog in which they reflected on their course expectations. Although clarity was a requirement, no detailed instructions were provided on how to write blog entries, as this activity was intended to be informal and have a free conversation-style. Finally, students posted comments in their peers’ blogs. At this point, based on their first blog entry, students seemed to have low expectations for this course and were particularly surprised to have a young, Latin female as an instructor.
The second session consisted of the next face-to-face activity (phase D). Here, students attended an introductory lecture for 1 h in which they learned the basic concepts necessary to understand the ancient biodiversity of Panama (e.g. types of outcrops, age, types of fossils, history of paleontology in Panama, and major contributions). Lastly (and after a 15 min break), students were engaged in a 1-h class discussion about the subjects introduced. During the discussion, students were very curious about the types of fossils that have been discovered in recent years along the Panama Canal.
Geology (Two Sessions) and Paleontology (Six Sessions)
The second and third sections (Fig. 4) had similar design, except for the online-collaborative activities, and the field trip to a fossil site. In both sections, the phase before face-to-face sessions (phase A) involved the reading of scientific articles about the content, and submitting one (1) question that emerged during the readings. For the geology section, students also went on a fieldtrip in order to observe some of the concepts taught. This field trip took place in the late Miocene Gatun Formation (San Judas locality), which is a marine, shallow-water paleo-environment with abundant invertebrates, sharks and rays (e.g. Pimiento et al. 2013). An overview on the geology and paleontology of the fossil site was provided for about 25 min. Then students spent about 3 h surface prospecting the area and collecting fossils. Most of these fossils were used for the research projects later in the semester and were then deposited in the collections of the STRI.
During the face-to-face sessions (phase B), students attended videoconferences with experts from the University of Florida in the US and lectures by STRI scientists. In both cases, they lasted 1 h. Often, the guest-speakers giving the talk were also the authors of the articles read. The speakers had access to students’ questions in advance and they covered them in their presentations. At the end of the lecture, students asked additional questions for 15 min. Students’ questions were mostly regarding further clarification about the lecture. Finally, the class, as a group, discussed the articles, the questions and the lectures for about 1 h. Most of discussions were related with the fossils in question (e.g. how and where to find them, how to date them, how to identify them, etc.). Students had a break of 15 min between the videoconference/lecture and the class discussion.
The phase between face-to-face sessions (phase C) was different in the geology and paleontology sections (Fig. 4). In the first, students created a collaborative wiki as a class in which they created a scheme of the most important concepts learned. Each student was required to contribute with 10 concepts and their definitions, and to link them with other concepts within the wiki. This facilitated synthesis while reinforced collaboration and students’ interactions. Conversely, for the paleontology section, students posted a blog entry after every session. In these posts, students provided a thoughtful description of their learning process by reflecting about what they had learned, what they found confusing, and what they found most interesting. Students were instructed to not simply provide a list of concepts, and to catalogue them as learned, confusing and interesting; but to critically think about their learning. Accordingly, they were also asked to include the reasons why certain concepts were harder to digest than others, or why some were more interesting. In so doing, students were motivated to reflect about what systems they are most interested in, what provokes more curiosity, and what kind of scientists they would like to be.
In the final stage, (phase D: next face-to-face session), students were requested to comment on at least two of their peer’s blogs, or wiki entries, engaging them in discussion and consensus. They also received feedback from the instructor about their posts. This feedback was based on whether or not students succeeded in providing authentic reflections. The criteria were used to produce this feedback included: (1) the student not only listed the concepts learned, still confusing, and interesting; but also included the reasons why certain concepts were learned differently relative to others, and (2) the student used this reflection to think about the kind of scientists they want to be in the future.
Research (Five Sessions)
For the last section of the course (Fig. 4), the before face-to-face sessions (phase A) consisted of sorting the research groups and themes. First, students individually revised their notes and reflected on what kind of research project they wanted to do. Based on that, we discussed the potential project themes and sorted the class into three groups with the following themes: invertebrates, sharks, and the fauna from the Panama Canal (Fig. 5). Each group had one mentor from STRI (including the instructor). All mentors were young Latin paleontology grad-students. Groups then brainstormed and decided on the topics to investigate within their theme.
During face-to-face sessions phase (phase B), students were engaged in two types of activities:
-
A series of workshops on how to design, implement and communicate their research projects. Topics included how to design a research project, how to manage and analyze data, how to write a paper for a peer-review journal and how to present it in a professional conference. Each workshop consisted on a theoretical section in which the instructor gave a presentation on the different topics, and on practical section in which students designed their projects and started analyzing the data, writing their manuscripts and preparing the presentation of their results.
-
One fieldtrip per research group to a fossil site. These field trips took place once students had designed their research projects. The field trips for the invertebrates and the sharks groups were to the late Miocene Gatun Formation, whereas for the Panama Canal group it was to the Miocene Cucaracha Formation (Figs. 4, 5). Research field trips lasted about 6 h in which students surface prospected the area and collected fossils for their projects.
Projects were entirely student-driven, as they decided on their topics and developed their researches independently (Fig. 5). Guidance, instructions and feedback were provided in the workshops. With regards to the manuscript, they also read an article on how to write scientific papers (Fig. 4). Such article provided the guidelines to prepare the document. As for the presentations, groups were instructed to give 15 min Power Point presentations in which all members of the group presented a section, and to answer questions from the audience for 5 min. All activities and deliverables of this phase were followed up and completed between face-to-face sessions (phase C).
In the last stage (phase D, the next face-to-face sessions) students engaged in role-playing situations where they simulated being scientists. First, they played the role of authors and submitted their papers to a simulated peer-review journal. At the same time, other students played the role of reviewers and editors. After the “reviewers” commented on the manuscripts, the “editors” made a decision and sent the “authors” the revisions for them to make the appropriate changes. The peer-review process took place in the classroom, where I provided them with guidelines based on my own experience. I explained the process and provided examples of reviews of my own papers, and of reviews I have made of other papers. Students never heard of the peer-review process before; therefore, they were very interested and curious. They understood the process quickly, seemed to have enjoyed it, and did not face any major challenges.
Lastly, students played the role of scientists attending a professional symposium in which they presented their results (Fig. 5) following the guidelines provided during the workshops. The simulated symposium program consisted in an introduction from the instructor, three talks (20 min each including questions from the audience) and a coffee break. STRI scientists and staff attended the meeting. Students dressed professionally for the meeting and took the activity very seriously.
After the role-playing activities, students reflected about this experience and the NOS in their blogs. Finally, students had a conversation via Skype with the only Panamanian formally trained in paleontology so far. She talked about her personal experience becoming a scientist and students asked her questions about how to become an international graduate student.
Assessment
The course started with an anonymous evaluation to assess students’ basic knowledge on paleontology and general biology. This was done so that I could address problematic themes in the course, misconceptions and gaps in their knowledge. Questions included what is: paleontology, a fossil, a species, a population and extinction. I also asked students to provide an estimated age for the formation of the earth, the universe, life on earth, the extinction of dinosaurs and the first humans. This evaluation evidenced that students started the class with a very basic understanding of paleontology. However, they had a striking gap of knowledge in more specific subjects (e.g. the concept of species and the age of the most important event in life’s history). These gaps were addressed throughout the course (see Additional file 1).
Other assessments took place to evaluate students’ learning during the course (Fig. 6). The following activities and criteria were used as a basis for determining grades (rubrics were not used):
-
Readings: students’ understanding of the main concepts addressed in the articles was evaluated in every session with a one-question quiz. Questions varied depending on the article and intended to assess whether or not the student had read the paper and understood the concepts. Quizzes had the lowest grade scores (Fig. 6) reflecting problems understanding the readings. This can be due to the fact that articles were mostly in English, adding a further level of difficulty to Spanish-speaking students.
-
Discussion engagement: students’ participation in the class discussions of the papers was evaluated in every session. This was assessed by giving points every time a student gave an opinion, or asked a question in the discussion. Most of the time, all students participated (Fig. 6).
-
Wikis: students’ ability to define and connect different concepts was evaluated in their wiki entries. Every student was expected to define 10 concepts per session (two geology sessions) and connect them to earn full credit. All students completed this assignment; however, in a few cases, they provided less than 10 definitions (Fig. 6).
-
Blogs: students’ ability to reflect on their own learning was assessed in their blogs. After each paleontology session, I read their entries and evaluated if they had provided a thoughtful description of their learning process. Superficial posts (e.g. only saying they enjoyed the class) did not qualify as a reflective post. Such types of posts occurred only at the beginning of the class. In general, students were found to have truly reflected on their own learning in their blogs (Fig. 6).
-
Research project: students’ ability to apply the concepts learned to real-life situations using research skills was evaluated by assessing (Fig. 6):
-
Entries in their field-books: I evaluated if they provide a detailed description of their observations and ideas. Students struggled with this in their first field trip but for their second trip, they all obtained full credit in this evaluation.
-
Performance in the peer-review process: I assessed if they were actively and critically participating in their roles as “reviewers” or “editors”. This was counted towards their grade in engagement in discussion (see above).
-
The written research project (RP written) and project presentations (RP oral): I evaluated if they returned an adequate manuscript and delivered an adequate oral presentation following the guidelines provided (see “Implementation” section).
Students were highly engaged in the research section of the course and they all obtained full credit (Fig. 6).
-
Integration (exams): students’ ability to integrate the concepts learned was evaluated in two mid-term exams and a final exam (Additional file 1). Even though the midterms had relatively low class-average scores, students did very well in the final exam (Fig. 6). This trend suggests that students were able to better understand the content as they completed additional activities (e.g. research section and role playing).
The course ended with an anonymous course evaluation, in which students rated (i.e. excellent, average or poor) the course strategies and content. Students overwhelmingly rated this course as excellent. However, 20 % thought that the field trips were average. Students had also space to comment on what they liked the most, what they did not like, and to provide suggestions for future courses. Students mostly like the stimulation of critical thinking and authentic learning, they didn’t like the fact that this was a time-consuming course and complained about the reading load, especially since it was in English. Finally they suggested having more field trips and fewer readings.