Anderson LI, Trewin NH. An Early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland. Palaeontology. 2003;46(3):467–509.
Google Scholar
Barnes RSK, Calow PP, Olive PJW, Golding DW, Spicer JI. The invertebrates: a synthesis. Oxford: Wiley-Blackwell; 2001.
Google Scholar
Bartolomaeus T. Protonephridia and metanephridia—their relation within the Bilateria. J Zool Syst Evol Research 1992;30:21–45.
Google Scholar
Bastock M. Courtship: an ethological study. New Jersey: Transaction Publishers; 2007.
Google Scholar
Bell WJ, Adiyodi KG. The American cockroach. London: Chapman and Hall; 1982.
Google Scholar
Benton MJ. Vertebrate palaeontology: third edition. Oxford: Blackwell Publishing; 2005.
Google Scholar
Benton MJ, Pearson PN. Speciation in the fossil record. Trends Ecol Evol. 2001;16(7):405–11.
Google Scholar
Béthoux O, Klass KD, Schneider JW. Tackling the Protoblattoidea problem: revision of Protoblattinopsis stubblefieldi (Dictyoptera; Late Carboniferous). European J Entomol. 2009;106:145–52.
Google Scholar
Bitsch C, Bitsch J. Phylogenetic relationships of basal hexapods among the mandibulate arthropods: a cladistic analysis based on comparative morphological characters. Zool Scr. 2004;33(6):511–50.
Google Scholar
Brusca RC, Brusca GJ. Invertebrates—second edition. Sunderland: Sinauer Associates; 2003.
Google Scholar
Campiglia SS, Maddrell SHP. Ion absorption by the distal tubules of onychophoran nephridia. J Exp Biol. 1986;121:43–54.
CAS
Google Scholar
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond Ser B: Biol Sci. 2006;361(1470):969–1006.
CAS
Google Scholar
Chandler Jr AD. Anthracite coal and the beginnings of the Industrial Revolution in the United States. Bus Hist Rev. 1972;46(2):147–81.
Google Scholar
Choe JC, Crespi BJ. The evolution of mating systems in insects and arachnids. Cambridge: Cambridge University Press; 1997.
Google Scholar
Clack JA. The emergence of early tetrapods. Palaeogeogr Palaeoclimatol Palaeoecol. 2006;232(2–4):167–89.
Google Scholar
Clack JA. The fin to limb transition: new data, interpretations, and hypotheses from paleontology and developmental biology. Annu Rev Earth Planet Sci. 2009;37(1):163–79.
CAS
Google Scholar
Cleal CJ, Thomas BA. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology. 2005;3(1):13–31.
CAS
Google Scholar
Coates MI, Ruta M, Friedman M. Ever since Owen: changing perspectives on the early evolution of tetrapods. Annu Rev Ecol Evol Syst. 2008;39:571–92.
Google Scholar
Cocks LRM, Torsvik TH. European geography in a global context from the Vendian to the end of the Palaeozoic. Geol Soc Lond, Memoirs. 2006;32(1):83–95.
Google Scholar
Cody GD, Gupta NS, Briggs DEG, Kilcoyne ALD, Summons RE, Kenig F, et al. Molecular signature of chitin–protein complex in Paleozoic arthropods. Geology. 2011;39(3):255–8.
CAS
Google Scholar
Crawford CS. Millipedes as model detritivores. Berichte der Naturwissenschaftlich. 1992;10:277–88.
Google Scholar
Crawford CS, Cloudsley-Thompson JL. Water relations and desiccation-avoiding behavior in the vinegaroon Mastigoproctus giganteus (Arachnida: Uropygi). Entomologia Experimentalis et Applicata. 1971;14(1):99–106.
Google Scholar
Curtis CD, Coleman ML. On the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. In: Gautier DL, editor. Roles of organic matter in sediment diagenesis. Society of Economic Paleontologists and Mineralogists Special Publication 38; 1986. p. 23–33.
Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.
Google Scholar
Davies NS, Rygel MC, Gibling MR. Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios. 2010;25(8):527–39.
Google Scholar
DiMichele WA. Chapter 1.3.8.—Carboniferous coal-swamp forests. In: Briggs DEG, Crowther PR, editors. Palaeobiology II. Oxford: Wiley Blackwell; 2001. p. 79–82.
Google Scholar
DiMichele WA, Behrensmeyer AK, Olszewski TD, Labandeira CC, Pandolfi JM, Wing SL, et al. Long-term stasis in ecological assemblages: evidence from the fossil record. Annu Rev Ecol Evol Syst. 2004;35(1):285–322.
Google Scholar
DiMichele WA, Falcon-Lang HJ, John Nelson W, Elrick SD, Ames PR. Ecological gradients within a Pennsylvanian mire forest. Geology. 2007;35(5):415–8.
Google Scholar
Dohle W. Myriapod-insect relationships as opposed to an insect–crustacean sister group relationship. In: Fortey RA, Thomas RH, editors. Arthropod relationships. London: Chapman & Hall; 1998. p. 305–15.
Google Scholar
Dunlop JA. The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. In: Selden PA, editor. Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997. Burnham Beeches: British Arachnological Society; 1997. p. 9–16.
Google Scholar
Dunlop JA. Geological history and phylogeny of Chelicerata. Arthropod Struct Dev. 2010;39(2–3):124–42.
Google Scholar
Dunlop JA, Webster M. Fossil evidence, terrestrialization and arachnid phylogeny. J Arachnol. 1999;27(1):86–93.
Google Scholar
Dunlop JA, Anderson LI, Kerp H, Hass H. Preserved organs of Devonian harvestmen. Nature. 2003;425:916.
CAS
Google Scholar
Dunlop JA, Anderson LI, Kerp H, Hass H. A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Trans Royal Soc Edinburgh, Earth Sci. 2004;94(4):341–54.
Google Scholar
Dunlop JA, Tetlie OE, Penney D, Anderson LI. How many species of fossil arachnids are there? J Arachnol. 2008a;36(2):267–72.
Google Scholar
Dunlop JA, Tetlie OE, Prendini L. Reinterpretation of the Silurian scorpion Proscorpius osborni (Whitfield): integrating data from Palaeozoic and recent scorpions. Palaeontology. 2008b;51(2):303–20.
Google Scholar
Edgecombe GD. Palaeontological and molecular evidence linking arthropods, onychophorans, and other Ecdysozoa. Evol: Educ Outreach. 2009;2(2):178–90.
Google Scholar
Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev. 2010;39:74–87.
Google Scholar
Edney EB. Water balance in desert arthropods. Science. 1967;156(3778):1059–66.
CAS
Google Scholar
Edney EB. Transition from water to land in isopod crustaceans. Amer Zool. 1968;8(3):309–26.
Google Scholar
Edwards D. The role of mid-Palaeozoic mesofossils in the detection of early bryophytes. Philos Trans R Soc Lond Ser B: Biol Sci. 2000;355:733–54.
CAS
Google Scholar
Eldredge N, Gould SJ. Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJ, editor. Models in paleobiology. San Francisco: Freeman, Cooper & Co.; 1972. p. 82–115.
Google Scholar
Engel MS, Grimaldi DA. New light shed on the oldest insect. Nature. 2004;427:627–30.
CAS
Google Scholar
Falcon-Lang HJ. Fire ecology of the Carboniferous tropical zone. Palaeogeogr Palaeoclimatol Palaeoecol. 2000;164:339–55.
Google Scholar
Falcon-Lang HJ, Miller RF. Palaeoenvironments and palaeoecology of the Early Pennsylvanian Lancaster Formation (‘Fern Ledges’) of Saint John, New Brunswick, Canada. J Geol Soc Lond. 2007;164(5):945–57.
Google Scholar
Fayers SR, Trewin NH. A hexapod from the Early Devonian Windyfield chert, Rhynie, Scotland. Palaeontology. 2005;48(5):1117–30.
Google Scholar
Fayers SR, Dunlop JA, Trewin NH. A new Early Devonian trigonotarbid arachnid from the Windyfield Chert, Rhynie, Scotland. J Syst Palaeontol. 2005;2(4):269–84.
Google Scholar
Garwood RJ, Dunlop JA. Morphology and systematics of Anthracomartidae (Arachnida: Trigonotarbida). Palaeontology. 2011;54(1):145–61.
Google Scholar
Garwood RJ, Sutton MD. X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects. Biol Lett. 2010;6:699–702.
Google Scholar
Garwood RJ, Dunlop JA, Sutton MD. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids. Biol Lett. 2009;5:841–4.
Google Scholar
Giribet G, Vogt L, González AP, Abel PG, Prashant S, Kury AB. A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics. 2010;26(4):408–37.
Google Scholar
Gould SJ. The structure of evolutionary theory. Cambridge: Belknap; 2002.
Google Scholar
Gould SJ, Eldredge N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 1977;3(2):115–51.
Google Scholar
Gradstein FM, Ogg JG, Smith AG. International stratigraphic chart. Cambridge: Cambridge University Press; 2009.
Google Scholar
Grimaldi DA. 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev. 2010;39:191–203.
Google Scholar
Grimaldi DA, Engel MS. Evolution of the insects. Cambridge: Cambridge University Press; 2005.
Google Scholar
Gullan PJ, Cranston PS. The insects: an outline of entomology—fourth edition. Oxford: Blackwell; 2010.
Google Scholar
Hadley NF. Adaptational biology of desert scorpions. J Arachnol. 1974;2:11–23.
Google Scholar
Hadley NF. The arthropod cuticle. Sci Am. 1986;255:104–12.
Google Scholar
Hadley NF. Water relations of terrestrial arthropods. London: Academic; 1994.
Google Scholar
Hartwell M. The First Industrial Revolution. The American Economic Review, vol. 57. Cambridge: Cambridge University Press; 1967.
Google Scholar
Haupt J. Phylogenetic aspects of recent studies on myriapod sense organs. In: Camatini M, editor. Myriapod biology. London: Academic; 1979. p. 391–406.
Google Scholar
Higashi M, Abe T, Burns TP. Carbon–nitrogen balance and termite ecology. Proc R Soc Lond Ser B: Biol Sci. 1992;249(1326):303–8.
Google Scholar
Hopkin SP, Read HJ. The biology of millipedes. Oxford: Oxford University Press; 1992.
Google Scholar
Inward D, Beccaloni G, Eggleton P. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett. 2007;3:331–5.
CAS
Google Scholar
Jenner RA. Higher-level crustacean phylogeny: consensus and conflicting hypotheses. Arthropod Struct Dev. 2010;39:143–53.
Google Scholar
Jeram AJ. Scorpions from the Viséan of East Kirkton, West Lothian, Scotland, with a revision of the infraorder Mesoscorpionina. Trans Royal Soc Edinburgh, Earth Sci. 1994a;84:283–99.
Google Scholar
Jeram AJ. Carboniferous Orthosterni and their relationship to living scorpions. Palaeontology. 1994b;37(3):513–50.
Google Scholar
Jeram AJ, Selden PA, Edwards D. Land animals in the Silurian: Arachnids and myriapods from Shropshire, England. Science. 1990;250:658–61.
CAS
Google Scholar
Johnson EW, Briggs DEG, Suthren RJ, Wright JL, Tunnicliff SP. Non-marine arthropod traces from the subaerial Ordovician Borrowdale volcanic group, English Lake District. Geol Mag. 1994;131(3):395–406.
Google Scholar
Kamenz C, Dunlop JA, Scholtz G, Kerp H, Hass H. Microanatomy of Early Devonian book lungs. Biol Lett. 2008;4:212–5.
Google Scholar
Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389:33–9.
CAS
Google Scholar
Klass KD, Kristensen NP. The ground plan and affinities of hexapods: recent progress and open problems. Annales de la Société Entomologique de France. 2001;37(1–2):265–98.
Google Scholar
Krapf D. Verhaltensphysiologishe Untersuchungen zum Beutefang von Skorpionen mit besonderer Berücksichtigung der Trichobothrien. PhD thesis, University of Würzburg; 1986.
Labandeira CC, Beall BS. Arthropod terrestriality. In: Culver SJ, editor. Arthropod palaeobiology. Short Courses in Palaeontology Number Three. Knoxville: Palaeontological Society; 1990. p. 214–32.
Google Scholar
Legg DA, Garwood RJ, Dunlop JA, and Sutton MD. A taxonomic revision of Orthosternous scorpions from the English Coal-Measures aided by X-ray micro-tomography. Palaeontologia Electronica; 2011 (in press).
Levi HW. Adapations of respiratory systems of spiders. Evolution. 1967;21(3):571–83.
Google Scholar
Lewis JGE. The biology of centipedes. Cambridge: Cambridge University Press; 2007.
Google Scholar
Little C. The colonisation of land: origins and adaptations of terrestrial animals. Cambridge: Cambridge University Press; 1983.
Google Scholar
Lourenço WR, Gall JC. Fossil scorpions from the Buntsandstein (Early Triassic) of France. Comptes Rendus Palevol. 2004;3(5):369–78.
Google Scholar
Machado G, Pinto-da-Rocha R, Giribet G. What are harvestmen? In: Pinto-da-Rocha R, Machado G, Giribet G, editors. Harvestmen: the biology of Opiliones. Cambridge: Harvard University Press; 2007. p. 1–13.
Google Scholar
Meßlinger K. Fine structure of scorpion trichobothria (Arachnida, Scorpiones). Zoomorphology. 1987;107(1):49–57.
Google Scholar
Modesto SP, Hirst S, Reisz RR. Arthropod remains in the oral cavities of fossil reptiles support inference of early insectivory. Biol Lett. 2009;5:838–40.
Google Scholar
Nelson CE. On the persistence of unicorns: the trade-off between content and critical thinking revisited. In: Pescosolido BA, Aminzade R, editors. The social worlds of higher education: handbook for teaching in a new century. Thousand Oaks: Pine Forge Press; 1999. p. 168–84.
Google Scholar
Norton RA, Bonamo PM, Grierson JD, Shear WA. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol. 1988;62(2):259–69.
Google Scholar
Pennock RT. God of the gaps: the argument from ignorance and the limits of methodological naturalism. In: Petto AJ, Godfrey LR, editors. Scientists confront intelligent design and creationism. New York: W.W. Norton; 2007. p. 309–38.
Google Scholar
Plotnick RE, Kenig F, Scott AC, Glasspool IJ, Eble CF, Lang WJ. Pennsylvanian paleokarst and cave fills from northern Illinois, USA: a window into Late Carboniferous environments and landscapes. PALAIOS. 2009;24(10):627–37.
Google Scholar
Polis GA. The biology of scorpions. Palo Alto: Stanford University Press; 1990.
Google Scholar
Prave AR. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology. 2002;30:811–4.
Google Scholar
Rasmussen B, Blake TS, Fletcher IR, Kilburn MR. Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. Geology. 2009;37(5):423–6.
Google Scholar
Raven JA. Comparative physiology of plant and arthropod land adaptation. Philos Trans R Soc Lond Ser B: Biol Sci. 1985;309(1138):273–88.
Google Scholar
Reissland A, Görner P. Trichobothria. In: Barth FG, editor. Neurobiology of arachnids. Berlin: Springer; 1985. p. 138–61.
Google Scholar
Retallack GJ. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology. 2001;44(2):209–35.
Google Scholar
Retallack GJ, Feakes C. Trace fossil evidence for Late Ordovician animals on land. Science. 1987;235:61–3.
CAS
Google Scholar
Rice CM, Ashcroft WA, Batten DJ, Boyce AJ, Caulfield JBD, Fallick AE, et al. A Devonian auriferous hot spring system, Rhynie, Scotland. J Geol Soc Lond. 1995;152(2):229–50.
CAS
Google Scholar
Roberts MBV. Biology: a functional approach—fourth Edition. Cheltenham: Nelson Thornes; 1986.
Google Scholar
Rößler R, Dunlop JA, Schneider JW. A redescription of some poorly known Rotliegend arachnids from the Lower Permian (Asselian) of the Ilfeld and Thuringian Forest Basins, Germany. Paläontologische Zeitschrift. 2003;77(2):417–27.
Google Scholar
Ruppert EE, Smith PR. The functional organization of filtration nephridia. Biol Rev. 1988;63(2):231–58.
Google Scholar
Ruppert EE, Fox R, Barnes RD. Invertebrate zoology: a functional evolutionary approach—seventh edition. Pacific Grove: Brooks/Cole; 2003.
Google Scholar
Sahney S, Benton MJ. Recovery from the most profound mass extinction of all time. Proc R Soc Lond Ser B: Biol Sci. 2008;275:759–65.
Google Scholar
Schawaller W, Shear WA, Bonamo PM. The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida). Am Mus Novit. 1991;3009:1–17.
Google Scholar
Schmitz A, Perry SF. Bimodal breathing in jumping spiders: morphometric partitioning of the lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol. 2001;204(24):4321–34.
CAS
Google Scholar
Scholtz G, Kamenz C. The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology. 2006;109:2–13.
Google Scholar
Scott EC. Evolution vs. creationism: an introduction—second edition. Westport: Greenwood Press; 2009.
Google Scholar
Selden PA, Edwards D. Colonisation of the land. In: Allen KC, Briggs DEG, editors. Evolution and the fossil record. London: Belhaven Press; 1990. p. 122–52.
Google Scholar
Selden PA, Jeram AJ. Palaeophysiology of terrestrialisation in the Chelicerata. Trans Royal Soc Edinburgh, Earth Sci. 1989;80:303–10.
Google Scholar
Selden PA, Shear WA, Bonamo PM. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology. 1991;34(2):241–81.
Google Scholar
Shear WA. Gigantocharinus szatmaryi, a new trigonotarbid arachnid from the Late Devonian of North America (Chelicerata: Arachnida: Trigonotarbida). J Paleontol. 2000a;74(1):25–31.
Google Scholar
Shear WA. The early development of terrestrial ecosystems. Nature. 2000b;351:283–9.
Google Scholar
Shear WA, Bonamo PM. Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. Am Mus Novit. 1988;2927:1–30.
Google Scholar
Shear WA, Edgecombe GD. The geological record and phylogeny of the Myriapoda. Arthropod Struct Dev. 2010;39:174–90.
Google Scholar
Shear WA, Kukalová-Peck J. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can J Zool. 1990;68(9):1807–34.
Google Scholar
Shear WA, Selden PA. Rustling in the undergrowth: animals in early terrestrial ecosystems. In: Gensel PG, Edwards D, editors. Plants invade the land: evolutionary and environmental perspectives. New York: Columbia University Press; 2001. p. 29–51.
Google Scholar
Shear WA, Bonamo PM, Grierson JD, Rolfe WDI, Smith EL, Norton RA. Early land animals in North America: Evidence from Devonian age arthropods from Gilboa, New York. Science 1984;224(4648):492–4.
CAS
Google Scholar
Shear WA, Selden PA, Rolfe WDI, Bonamo PM, Grierson JD. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida: Trigonotarbida). Am Mus Novit. 1987;2901:1–74.
Google Scholar
Shear WA, Gensel PG, Jeram AJ. Fossils of large terrestrial arthropods from the Lower Devonian of Canada. Nature. 1996;384:555–87.
CAS
Google Scholar
Shear WA, Jeram AJ, Selden PA. Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. Am Mus Novit. 1998;3231:1–16.
Google Scholar
Sheldon P. Plus ça change—a model for stasis and evolution in different environments. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;127:209–27.
Google Scholar
Shultz JW, Regier JC. Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean/hexapod clade. Proc R Soc Lond Series B: Biol Sci. 2000;267:1011–9.
CAS
Google Scholar
Skelton P. Evolution: a biological and palaeontological approach. New Jersey: Prentice Hall; 1993.
Google Scholar
Snodgrass RE. Evolution of the Annelida: Onychophora and Arthropoda. Smithson Misc Collect. 1938;97(6):1–159.
Google Scholar
Størmer L. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 1: Arachnida. Senckenbergiana Lethaea. 1970;51:335–69.
Google Scholar
Størmer L. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 2: Xiphosura. Senckenbergiana Lethaea. 1972;53:1–29.
Google Scholar
Størmer L. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 3: Eurypterida, Hughmilleriidae. Senckenbergiana Lethaea. 1973;54:119–205.
Google Scholar
Størmer L. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 4: Eurypterida, Drepanopteridae, and other groups. Senckenbergiana Lethaea. 1974;54:359–451.
Google Scholar
Størmer L. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Part 5. Myriapods and additional forms, with general remarks on the fauna and problems regarding invasion of land by arthropods. Senckenbergiana Lethaea. 1976;57:87–183.
Google Scholar
Størmer L. Gigantoscorpio willsi, a new scorpion from the Lower Carboniferous of Scotland and its associated preying microorganisms. Skrifter Utgitt av Det Norske Videnskaps–Akademi I Oslo I. Mathematisk-Naturvidenskabelig Klasse 1963; 8:1–171.
Google Scholar
Strother PK, Battison L, Brasier MD, Wellman CH. Earth’s earliest non-marine eukaryotes. Nature. 2011;473:505–9.
CAS
Google Scholar
Trewin NH, Fayers SR. A new crustacean from the Early Devonian Rhynie Chert, Aberdeenshire, Scotland. Trans Royal Soc Edinburgh, Earth Sci. 2007;93(4):355–82.
Google Scholar
Trewin NH, Fayers SR, Kelman R. Subaqueous silicification of the contents of small ponds in an Early Devonian hot-spring complex, Rhynie, Scotland. Can J Earth Sci. 2003;40(11):1697–712.
Google Scholar
Vogel BR, Durden CJ. The occurrence of stigmata in a Carboniferous scorpion. J Paleontol. 1966;40(3):655–8.
Google Scholar
Wellman CH, Gray J. The microfossil record of early land plants. Philos Trans R Soc Lond Series B: Biol Sci. 2000;355(1398):717–31.
CAS
Google Scholar
Wellman CH, Kerp H, Hass H. Spores of the Rhynie chert plant Aglaophyton (Rhynia) major (Kidston and Lang) D.S. Edwards, 1986. Rev Palaeobot Palynol. 2006;142(3–4):229–50.
Google Scholar
Weygoldt P. Fighting, courtship, and spermatophore morphology of the whip spider Musicodamon atlanteus Fage, 1939 (Phrynichidae) (Chelicerata, Amblypygi). Zoologischer Anzeiger. 2002;241(3):245–54.
Google Scholar
Whitford WG. Keystone arthropods as webmasters in desert ecosystems. In: Coleman DC, Hendrix PF, editors. Invertebrates as webmasters in ecosystems. Wallingford: CABI; 2000. p. 25–41.
Google Scholar
Wilson HM. Juliformian millipedes from the Lower Devonian of Euramerica: implications for the timing of millipede cladogenesis in the Paleozoic. J Paleontol. 2006;80:638–49.
Google Scholar
Wilson HM, Anderson LI. Morphology and taxonomy of Paleozoic millipedes (Diplopoda:Chilognatha: Archipolypoda) from Scotland. J Paleontol. 2004;78(1):169–84.
Google Scholar