Alberch P. Developmental constraints in evolutionary processes. In: Bonner JT, editor. Evolution and development. Berlin: Springer; 1982. p. 313–32.
Chapter
Google Scholar
Alberch P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios. 1989;12:21–57.
Article
Google Scholar
Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47–97.
Article
Google Scholar
Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature. 2000;406:378–82.
Article
CAS
Google Scholar
Amaral LAN, Scala A, Barthelemy M, Stanley HE. Classes of small-world networks. Proc Natl Acad Sci USA. 2000;97:11149–52
Article
CAS
Google Scholar
Arthur B. The nature of technology. New York: Simon and Schuster; 2010.
Google Scholar
Arthur B, Polak W. The evolution of technology within a simple computer model. Complexity. 2006;11:23–31.
Article
Google Scholar
Banzhaf W, Kuo PD. Network motifs in natural and artificial transcriptional regulatory networks. J Biol Phys Chem. 2004;4:85–92.
Article
CAS
Google Scholar
Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH. Evolution. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2008.
Basalla G. The evolution of technology. New York: Cambridge University Press; 1988.
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics. Phys Rep. 2006;424:175–308.
Article
Google Scholar
Bornholdt S, Schuster HG. Handbook of graphs and networks. Berlin: Wiley; 2003.
Google Scholar
Brown JH, West GB. Scaling in biology. New York: Oxford University Press; 2000.
Google Scholar
Buchanan M. NEXUS: small worlds and the groundbreaking theory of networks. New York: Norton and Company; 2003.
Google Scholar
Calabretta R, Nolfi S, Parisi D, Wagner GP. Duplication of modules facilitates the evolution of functional specialization. Artif Life. 2000;6:69–84.
Article
CAS
Google Scholar
Cardelli L. Can a systems biologist fix a Tamagotchi? Position paper for the Gilles Kahn Colloquium, Paris; 2007.
Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA. 2006;103:4723–8.
Article
CAS
Google Scholar
Colizza V, Flammini A, Maritan A, Vespignani A. Characterization and modeling of protein–protein interaction networks. Physica A. 2005;352:1–27.
Article
CAS
Google Scholar
Conway Morris S. Life’s solution: inevitable humans in a lonely universe. Cambridge: Cambridge University Press; 2003.
Book
Google Scholar
Cordero OX, Hogeweg P. Feed-forward loop circuits as a side effect of genome evolution. Mol Biol Evol. 2006;23:1931–6.
Article
CAS
Google Scholar
Dagan T, Martin W. Getting a better picture of microbial evolution en route to a network of genomes. Philos Trans R Soc Lond B. 2009;364:2187–96.
Article
CAS
Google Scholar
Dobrin R, Beg Q, Barabási A-L, Oltvai Z. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics. 2004;5:10.
Article
Google Scholar
Dokholyan NV, Shakhnovich B, Shakhnovich EI. Expanding protein universe and its origin from biological Big Bang. Proc Natl Acad Sci USA. 2006;99:14132–6.
Article
Google Scholar
Dorogovtsev SN, Mendes JFF. Evolution of networks: from biological nets to the Internet and WWW. New York: Oxford University Press; 2003.
Book
Google Scholar
Durand M. Architecture of optimal transport networks. Phys Rev E. 2006;73:016116.
Article
Google Scholar
Durand M, Weaire D. Optimizing transport in a homogeneous network. Phys Rev E. 2004;70:046125.
Article
Google Scholar
Eldredge N. Unfinished synthesis: biological hierarchies and modern evolutionary thought. New York: Oxford University Press; 1985
Google Scholar
Eldredge N. Biological and material cultural evolution: are there any true parallels? Perspect Ethol. 2001;13:113–53.
Article
Google Scholar
Ferrer-Cancho R, Janssen C, Solé RV. The topology of technology graphs: small world pattern in electronic circuits. Phys Rev E. 2001;64:32767.
Google Scholar
Foster DV, Kauffman SA, Socolar ES. Network growth models and genetic regulatory networks. Phys Rev E. 2006;73:031912.
Article
CAS
Google Scholar
Gerhart J, Kirschner M. Cells, embryos, and evolution. Oxford: Blackwell; 1997.
Google Scholar
Goodwin BC. How the leopard changed its spots: the evolution of complexity. New York: Charles Scribner’s Sons; 1994.
Google Scholar
Gorshenev AA, Pismak YuM. Punctuated equilibrium in software evolution. Phys Rev E. 2004;70:067103.
Article
CAS
Google Scholar
Gould SJ. The structure of evolutionary theory. Cambridge: Harvard University Press; 2002.
Google Scholar
Gould SJ, Lewontin RC. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B. 1979;205:581–98.
Article
CAS
Google Scholar
Guimerà R, Sales-Pardo M, Amaral L. Modularity from fluctuations in random graphs and complex networks. Phys Rev E. 2002;66:056120.
Article
Google Scholar
Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell Biology. Nature. 1999;402 Suppl:C47–C52.
Article
Google Scholar
Hogeweg P. Multilevel evolution: the fate of duplicated genes. Z Phys Chem. 2002;216:77–90.
Article
CAS
Google Scholar
Ispolatov I, Krapivsky PL, Yuryev A. Duplication–divergence model of protein interaction network. Phys Rev E. 2005;71:061911.
Article
CAS
Google Scholar
Jacob F. Evolution as tinkering. Science. 1977;196:1161–6.
Article
CAS
Google Scholar
Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA. 2005;102:13773–8.
Article
CAS
Google Scholar
Kauffman SA. Origins of order. New York: Oxford University Press; 1993.
Google Scholar
Kepes F (ed). Biological networks. Singapore: World Scientific; 2007.
Google Scholar
Kauffman SA. The origins of order. New York: Oxford University Press; 1993.
Google Scholar
Knabe JF, Nehaniv CL, Schlilstra MJ. Do motifs reflect evolved function? No convergent evolution of genetic regulatory network subgraph topologies. BioSystems. 2008;94:68–74.
Article
Google Scholar
Koonin EV, Wolf YI, Karev GP (eds). Power laws, scale-free networks and genome biology. New York: Springer; 2006.
Google Scholar
Kuo PD, Banzhaf W, Leier A. Network topology and the evolution of dynamics in an artificial regulatory network model created by whole genome duplication and divergence. Biosystems. 2006;85:177–200.
Article
Google Scholar
Krinke J. Is cloned code more stable than non-cloned code? Eighth IEEE international working conference on source code analysis and manipulation; 2008. p. 57–66.
Lazebnik V. Can a biologist fix a radio? -or, what I learned while studying apoptosis. Cancer Cell. 2002;2:179–82.
Article
CAS
Google Scholar
Lipson H, Pollack JB, Suh NP. On the origin of modular variation. Evolution. 2002;56:1549–56.
Article
Google Scholar
Lynch M. The evolution of genetic networks by non-adaptive processes. Nature Rev Gen. 2007;8:803–13.
Article
CAS
Google Scholar
Maere S, et al. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA. 2005;102:5454–9.
Article
CAS
Google Scholar
Mazurie A, Bottani S, Vergassola M. An evolutionary and functional assessment of regulatory network motifs. Genome Biol. 2005;6:R35.
Article
Google Scholar
McGhee GR. Theoretical morphology. New York: Columbia University Press; 1999.
Google Scholar
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7.
Article
CAS
Google Scholar
Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U. Superfamilies of designed and evolved networks. Science. 2004;303:1538–42.
Article
CAS
Google Scholar
Moses ME, Forrest S, Davis AL, Brown JH. Scaling theory for information networks. J Roy Soc Interface. 2008;5:1469–80.
Article
Google Scholar
Myers CR. Software systems as complex networks: structure, function, and evolvability of software collaboration graphs. Phys Rev E. 2003;68:046116.
Article
Google Scholar
Nehaniv CL, Hewitt J, Christianson B, Wernick P. What software evolution and biological evolution don’t have in common. Second international IEEE workshop on software evolvability. Philadelphia: IEEE Computer Society; 2006. p. 58–65.
Niklas KJ. Morphological evolution through complex domains of fitness. Proc Natl Acad Sci USA. 1994;91:6772–6779.
Article
CAS
Google Scholar
Ohno S. Evolution by gene duplication. Berlin: Springer; 1970.
Book
Google Scholar
Olesen JM, Bascompte J, Dupont JL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci USA. 2007;104:19891–19896.
Article
CAS
Google Scholar
Pastor-Satorras R, Smith E, Solé RV. Evolving protein interaction networks from gene duplication. J Theor Biol. 2003;222:199–210.
Article
CAS
Google Scholar
Patthy L. Protein evolution. Oxford: Blackwell; 1999.
Google Scholar
Pereira-Leal JB, Levy ED, Teichmann SA. The origin of functional modules: lessons from protein complexes. Phil Trans R Soc B. 2006;361:507–17.
Article
CAS
Google Scholar
Perez-Escudero A, de Polavieja GG. Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans. Proc Natl Acad Sci USA. 2007;104:17180–5.
Article
CAS
Google Scholar
Pressman RS. Software engineering: a practitioner’s approach. 6th ed. Boston: McGraw-Hill; 2005.
Google Scholar
Raff RA. The shape of life. Chicago: Chicago U. Press; 1996.
Google Scholar
Ramón y Cajal S. Textura del Sistema Nervioso del Hombre y de los Vertebrados. Madrid: Nicolas Moya; 1899.
Ravasz E, Somera SL, Mongru DA, Oltvai ZN, Barabási A-L. Hierarchical organization of modularity in metabolic networks. Science. 2002;297;1551–5.
Article
CAS
Google Scholar
Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys. Rev E 2006;74:01640.
Google Scholar
Rice JJ, Kershenbaum A, Stolovitzky G. Lasting impressions: motifs in protein–protein maps may provide footprints of evolutionary events. Proc Natl Acad Sci USA. 2005;102:3173–4.
Article
CAS
Google Scholar
Rodriguez-Caso C, Medina MA, Solé RV. Topology, tinkering and evolution of the human transcription factor network. FEBS J. 2005;272:6423–34.
Article
CAS
Google Scholar
Sammet JE. Computer languages: history and fundamentals. New York: Prentice-Hall; 1969.
Google Scholar
Solé RV, Valverde S. Are network motifs the spandrels of cellular complexity? Trends Ecol Evol. 2006;21:419–22.
Article
Google Scholar
Solé RV, Valverde S. Spontaneous emergence of modularity in cellular networks. J Royal Soc Interface. 2007;5:129–133
Article
Google Scholar
Solé RV, Ferrer i Cancho R, Montoya JM, Valverde S. Selection, tinkering, and emergence in complex networks. Complexity. 2002a;8:20–33.
Article
Google Scholar
Solé RV, Pastor-Satorras R, Smith E, Kepler TS. A model of large-scale proteome evolution. Adv Complex Syst. 2002b;5:43–54.
Article
Google Scholar
Solé RV, Salazar-Ciudad I, García-Fernandez J. Common pattern formation, modularity and phase transitions in a gene network model of morphogenesis. Physica A. 2001;305:640–7.
Article
Google Scholar
Sporns O. Networks of the brain. Cambridge: MIT; 2010.
Google Scholar
Striedter GF. Principles of brain evolution. New York: Sinauer; 2005.
Teichmann SA, Babu MM. Gene regulatory network growth by duplication. Nat Genet. 2003;36:492–96.
Article
Google Scholar
Temkin I, Eldredge N. Phylogenetics and material cultural evolution. Curr Anthrop 2007;48:146–53.
Article
Google Scholar
Valverde S, Solé RV. Network motifs in computational networks: a case study in software architecture. Phys Rev E. 2005a;72:026107.
Article
Google Scholar
Valverde S, Solé RV. Logarithmic growth dynamics in software networks. Europhys Lett. 2005b;72:858–64.
Article
CAS
Google Scholar
Valverde S, Solé RV. On the nature of design. In: Minai A, Braha D, Bar-Yam Y, editors. Complex engineered systems. New York: Springer; 2006.
Google Scholar
van Noort V, Snel B, Huynen M. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Reports. 2004;5:280–4.
Article
Google Scholar
Vázquez A, Flammini A, Maritan A, Vespignani A. Modeling of protein interaction networks. ComplexUs. 2003;1:38–44.
Article
Google Scholar
von Dassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust developmental module. Nature 2000;406:188–92.
Article
CAS
Google Scholar
Wagner G. Adaptation and the modular design of organisms. Lec Notes Comp Sci. 1995;929:315–28.
Article
Google Scholar
Wagner A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol. 2001;18:1283–92.
Article
CAS
Google Scholar
Wagner A. Does natural selection mold molecular networks? Science STKE; 2003. p. 41–3.
Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nature Rev Genet. 2007;8:921–31.
Article
CAS
Google Scholar
Wasserman S, Faust K. Social network analysis. UK: Cambridge University Press; 1994.
Book
Google Scholar
Watts DJ, Strogatz SH. Collective dynamics in ‘small-world’ networks. Nature (Lond). 1998;393:440–2.
Article
CAS
Google Scholar
West GB, Brown JH. Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–126.
Article
CAS
Google Scholar
Wilkins AS. Between “designs” and “bricolage”: genetic networks adaptive evolution. Proc Natl Acad Sci USA. 2007;104:8590–96.
Article
CAS
Google Scholar
Wolf DM, Arkin AP. Motifs, modules and games in bacteria. Curr Opin Microbiol. 2003;6:125–34.
Article
CAS
Google Scholar
Zhang LV, et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol. 2005;4:6.
Article
CAS
Google Scholar