Aguinaldo AMA, Turbeville JM, Lindford LS, Rivera MC, Garey JR, Raff R, et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 1997;387:489–93.
Article
CAS
Google Scholar
Almeida WO, Christoffersen ML, Amorim DS, Eloy ECC. Morphological support for the phylogenetic positioning of Pentastomida and related fossils. Biotemas 2008;21:81–90.
Google Scholar
Baguñà J, Martinez P, Paps J, Riutort M. Back in time: a new systematic proposal for the Bilateria. Philos Trans R Soc B. 2008;363:1481–91.
Article
Google Scholar
Balavoine G, de Rosa R, Adouette A. Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol. 2002;24:266–373.
Google Scholar
Bergström J, Hou X. Chengjiang arthropods and their bearing on early arthropod evolution. In: Edgecombe GD, editor. Arthropod fossils and phylogeny. New York: Columbia University Press; 1998. p. 151–84.
Google Scholar
Bergström J, Hou X. Cambrian onychophora or xenusians. Zool Anz. 2001;240:237–45.
Article
Google Scholar
Bergström J, Hou X. Arthropod origins. Bulletin of Geosciences, Czech Geological Survey. 2003;78:323–34.
Google Scholar
Bergström J, Hou X. Early Palaeozoic non-lamellipedian arthropods. In: Koenemann S, Jenner R, editors. Crustacea and arthropod relationships. Crustac. Issues 2005;16:73–93.
Google Scholar
Bitsch J, Bitsch C. The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zool. 2007;88:317–35.
Article
Google Scholar
Bourlat SJ, Nielsen C, Economou AD, Telford MA. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol. 2008;49:23–31.
Article
CAS
Google Scholar
Budd GE. A Cambrian gilled lobopod from Greenland. Nature 1993;364:709–11.
Article
Google Scholar
Budd GE. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 1996;29:1–14.
Article
Google Scholar
Budd GE. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland. In: Fortey RA, Thomas RH, editors. Arthropod relationships. London: Chapman & Hall; 1997. p. 125–38.
Google Scholar
Budd GE. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland). Trans R Soc Edinb Earth Sci. 1999;89:249–90.
Article
Google Scholar
Budd GE. Tardigrades as ‘stem-group arthropods’: the evidence from the Cambrian fauna. Zool Anz. 2001;240:65–279.
Article
Google Scholar
Budd GE. A palaeontological solution to the arthropod head problem. Nature 2002;417:271–5.
Article
CAS
Google Scholar
Budd GE. Arthropods as ecdysozoans: the fossil evidence. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M, editors. The new panorama of animal evolution. Proceedings of the 18th International Congress of Zoology. Sofia, Moscow: Pensoft; 2003. p. 479–87.
Google Scholar
Budd GE. Head structure in upper stem-group arthropods. Palaeontology 2008;51:1–13.
Article
Google Scholar
Butterfield NJ. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 2002;28:155–71.
Article
Google Scholar
Chen J-Y, Ramsköld L, Zhou G-Q. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science 1994;264:1304–8.
Article
CAS
Google Scholar
Chen J-Y, Edgecombe GD, Ramsköld L, Zhou G-Q. Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution. Science 1995;268:1339–43.
Article
CAS
Google Scholar
Clark AG, et al. 12 Drosophila Genome Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;450:203–18.
Article
Google Scholar
Cobbett A, Wilkinson M, Wills MA. Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst Biol. 2007;56:753–66.
Article
Google Scholar
Copley RR, Aloy P, Russell RB, Telford MJ. Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caeonorhabditis elegans. Evolut Develop. 2004;6:164–9.
Article
CAS
Google Scholar
de Rosa R, Grenier JK, Andreeva T, Cook CE, Adouette A, Akam M, et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 1999;399:772–6.
Article
CAS
Google Scholar
Dewell RA, Dewell WC. The place of tardigrades in arthropod evolution. In: Fortey RA, Thomas RH, editors. Arthropod relationships. London: Chapman & Hall; 1997. p. 109–23.
Google Scholar
Dewell RA, Budd GE, Castano DF, Dewell WC. The organization of the subesophageal nervous system in tardigrades: insights into the evolution of the arthropod hypostome and tritocerebrum. Zool Anz. 1999;238:191–203.
Google Scholar
Dopazo H, Dopazo J. Genome-scale evidence of the nematode-arthropod clade. Genome Biology. 2005;6:R41.
Article
Google Scholar
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad taxon sampling improves resolution of the Animal Tree of Life. Nature 2008;452:745–9.
Article
CAS
Google Scholar
Dzik J. Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan. Palaeontology 2003;46:93–112.
Article
Google Scholar
Dzik J, Krumbiegel G. The oldest ‘onychophoran’ Xenusion: a link connecting phyla? Lethaia 1989;22:169–81.
Article
Google Scholar
Eriksson BJ, Tait NN, Budd GE. Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol. 2003;255:1–23.
Article
Google Scholar
Gabriel WN, Goldstein B. Segmental expression of Pax3/7 and Engrailed homologs in tardigrade development. Dev Genes Evol. 2007;217:421–33.
Article
CAS
Google Scholar
García-Bellido DC, Collins D. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology 2007;50:693–709.
Article
Google Scholar
Giribet G. Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 2003;106:303–26.
Article
CAS
Google Scholar
Giribet G, Richter S, Edgecombe GD, Wheeler WC. The position of crustaceans within Arthropoda—evidence from nine molecular loci and morphology. In: Koenemann S, Jenner R, editors. Crustacea and arthropod relationships. Crustac. Issues 2005;16:307–52.
Giribet G, Dunn CW, Edgecombe GD, Hejnol A, Martindale MQ, Rouse GW. Assembling the spiralian Tree of Life. In: Telford MJ, Littlewood DTJ, editors. The evolution of animals. Oxford: Oxford University Press; 2009.
Google Scholar
Gregory TR. Understanding evolutionary trees. Evolution: Education and Outreach. 2008;1:121–37.
Google Scholar
Haase A, Stern M, Wächtler K, Bicker G. A tissue-specific marker of Ecdysozoa. Dev Genes Evol. 2001;211:428–33.
Article
CAS
Google Scholar
Harzsch S, Müller CHG, Wolf H. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol. 2005;215:53–68.
Article
Google Scholar
Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol. 2006;38:100–16.
Article
CAS
Google Scholar
Helmkampf M, Bruchhaus I, Hausdorf B. Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Mol Phylogenet Evol. 2008;46:206–14.
Article
CAS
Google Scholar
Hou X, Bergström J. Cambrian lobopodians—ancestors of extant onychophorans? Zool J Linn Soc. 1995;114:3–19.
Article
Google Scholar
Hou X, Bergström J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils & Strata. 1997;45:1–116.
Google Scholar
Hou X, Bergström J. Dinocarids—anomalous arthropods or arthropod-like worms. In: Rong J, Fang Z, Zhou Z, Zhan R, Wang X, Yuan X, editors. Originations, radiations and biodiversity changes- Evidences from the Chinese fossil record. Beijing: Science; 2006. p. 139–58, 847–50.
Google Scholar
Hou X, Bergström J, Ahlberg P. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China. Geologiska Föreningens i Stockholm Förhandlingar. 1995;117:163–83.
Google Scholar
Hou X, Aldridge RJ, Bergström J, Siveter DJ, Siveter DJ, Feng XH. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Oxford: Blackwell; 2004a.
Google Scholar
Hou X, Ma X, Zhao J, Bergström J. The lobopodian Paucopidia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China. Lethaia 2004b;37:235–44.
Article
Google Scholar
Irimia M, Maeso L, Penny D, García-Fernandez J, Roy SW. Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. Mol Biol Evol. 2007;24:604–1607.
Article
Google Scholar
Jenner RA, Scholtz G. Playing another round of metazoan phylogenetics: historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann S, Jenner R, editors. Crustacea and arthropod relationships. Crustac Issues. 2005;16:355–85.
Kristensen RM. Comparative morphology: do the ultrastructural investigations of Loricifera and Tardigrada support the clade Ecdysozoa? In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M, editors. The new panorama of animal evolution. Proceedings of the 18th International Congress of Zoology. Sofia, Moscow: Pensoft; 2003. p. 467–77, 2003.
Google Scholar
Kusche K, Bangel N, Mueller C, Hildebrandt J-P, Weber W-M. Molecular cloning and sequencing of the Na+/K+ -ATPase α-subunit of the medical leech Hirudo medicinalis (Annelida)—implications for modelling protostomian evolution. J Zoolog Syst Evol Res. 2005;43:339–42.
Article
Google Scholar
Liu J, Han J, Simonetta AM, Hu S, Zhang Z, Yao Y, et al. New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang fauna. Chin Sci Bull. 2006a;51:358–63.
Article
Google Scholar
Liu J, Shu D, Han J, Zhang Z, Zhang X. A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte. Acta Palaeontol Pol. 2006b;51:215–22.
Google Scholar
Liu J, Shu D, Han J, Zhang Z, Zhang X. Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China. Acta Zool. 2007;88:279–88.
Article
Google Scholar
Liu J, Shu D, Han J, Zhang Z, Zhang X. Origin, diversification, and relationships of Cambrian lobopods. Gondwana Res. 2008;14:277–83.
Article
CAS
Google Scholar
Maas A, Waloszek D. Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians—an ‘Orsten’ perspective. Zool Anz. 2001;240:451–9.
Article
Google Scholar
Maas A, Mayer G, Kristensen RM, Waloszek D. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction. Chin Sci Bull. 2007;52:3385–92.
Article
Google Scholar
Mallatt JM, Giribet G. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol. 2006;40:772–94.
Article
CAS
Google Scholar
Mallatt JM, Garey JR, Shultz JW. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol. 2004;31:178–91.
Article
CAS
Google Scholar
Mayer G. Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology 2006;125:1–12.
Article
Google Scholar
Mayer G, Harzsch S. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol. 2007;7:118.
Article
Google Scholar
Mayer G, Harzsch S. Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol. 2008;507:1196–208.
Article
Google Scholar
Müller MCM. Polychaete nervous systems: ground pattern and variations—CLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integrative and Comparative Biology. 2006;46:125–33.
Article
Google Scholar
Nielsen C. Animal evolution, interrelationships of the living phyla. 2nd ed. Oxford: Oxford University Press; 2001.
Google Scholar
Petrov NB, Vladychenskaya NS. Phylogeny of molting protostomes (Ecdysozoa) as inferred from 18S and 28S rRNA gene sequences. Mol Biol. 2005;39:590–601.
Article
CAS
Google Scholar
Philippe H, Telford MJ. Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol. 2006;21:614–20.
Article
Google Scholar
Philippe H, Lartillot N, Brinkmann H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol. 2005;22:1175–84.
Article
Google Scholar
Podsiadlowski L, Braband A, Mayer G. The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the Ecdysozoa hypothesis. Mol Biol Evol. 2008;25:42–51.
Article
CAS
Google Scholar
Ramsköld L, Chen J. Cambrian lobopodians: morphology and phylogeny. In: Edgecombe GD, editor. Arthropod fossils and phylogeny. New York: Columbia University Press; 1998. p. 107–50.
Google Scholar
Richter S. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol. 2002;2:217–37.
Article
Google Scholar
Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, Von Haesler A, Kube M, et al. EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol. 2007;45:942–51.
Article
CAS
Google Scholar
Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Bagunà J, et al. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA. 2002;99:11246–51.
Article
CAS
Google Scholar
Schmidt-Rhaesa A. Ecdysozoa versus Articulata. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin. 2004;43:35–49.
Google Scholar
Schmidt-Rhaesa A. The evolution of organ systems. Oxford: Oxford University Press; 2007.
Book
Google Scholar
Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR. The position of the Arthropoda in the phylogenetic system. J Morphol. 1998;238:263–85.
Article
Google Scholar
Schmidt-Rhaesa A, Kulessa J. Muscular architecture of Milnesium tardigradum and Hypsibius sp. (Eutardigrada, Tardigrada) with some data on Ramazottius oberhaeuseri. Zoomorphology 2007;12:265–81.
Article
Google Scholar
Scholtz G. The Articulata hypothesis - or what is a segment? Org Divers Evol. 2002;2:197–215.
Article
Google Scholar
Scholtz G. Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M, editors. The new panorama of animal evolution. Proceedings of the 18th International Congress of Zoology. Sofia, Moscow: Pensoft; 2003. p. 489–501, 2003.
Google Scholar
Scholtz G, Edgecombe GD. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution. 2006;216:395–415.
Article
Google Scholar
Seaver EC, Kaneshige LM. Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol. 2006;289:179–94.
Article
CAS
Google Scholar
Sempere LF, Martinez P, Cole C, Baguñà J, Peterson KJ. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evolut Develop. 2007;9:409–15.
Article
CAS
Google Scholar
Smith AB. Systematics and the fossil record. Documenting evolutionary patterns. Oxford: Blackwell; 1994.
Book
Google Scholar
Stollewerk A, Chipman A. Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integrative and Comparative Biology. 2006;46:195–206.
Article
Google Scholar
Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S. Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc B. 2006;273:1857–66.
Article
Google Scholar
Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O. The evolution of the Ecdysozoa. Philos Trans R Soc B. 2008;363:1529–37.
Article
Google Scholar
Thorley JL, Wilkinson M. Testing the phylogenetic stability of early tetrapods. J Theor Biol. 1999;200:343–4.
Article
Google Scholar
Wägele J-W, Misof B. On quality of evidence in phylogeny reconstruction: a reply to Zrzavý’s defence of the ‘Ecdysozoa’ hypothesis. J Zoolog Syst Evol Res. 2001;39:165–76.
Article
Google Scholar
Waggoner BM. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Syst Biol. 1996;45:190–222.
Article
Google Scholar
Waloszek D, Chen J, Maas A, Wang X. Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev. 2005;34:189–205.
Article
Google Scholar
Waloszek D, Maas A, Chen J, Stein M. Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeogr Palaeoclimatol Palaeoecol. 2007;254:273–87.
Article
Google Scholar
Whittington HB, Briggs DEG. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philos Trans R Soc Lond B. 1985;309:569–609.
Article
Google Scholar
Zantke J, Wolff C, Scholtz G. Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): implications for the phylogenetic position of Tardigrada. Zoomorphology 2008;127:21–36.
Article
Google Scholar
Zhang X-L, Briggs DEG. The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale. Lethaia 2007;40:161–73.
Article
Google Scholar