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Margaret Wertheim earned degrees in physics and
mathematics in her homeland, Australia, before be-
coming a prize-winning science journalist and author.
She is the founder, with her twin sister, Christine, of the
Institute For Figuring, a new kind of “feral science”
organization located in Los Angeles. The IFF’s mission
is to promote the public understanding of the poetic and
aesthetic dimensions of science and mathematics.
Wertheim’s books include Pythagoras’ Trousers, a
history of the relationship between physics and religion

(1995), The Pearly Gates of Cyberspace: A History of
Space from Dante to the Internet (1999) and A Field
Guide to Hyperbolic Space (2005), upon which this
interview was based.

Why are you fascinated with hyperbolic space?
Because it gives us important new insights into nature

and the cosmos.
We have built a world of rectilinearity: the rooms we

inhabit, the skyscrapers we work in, the grid-like arrangement
of our streets and the freeways we travel on our way to work
speak to us in straight lines.

People have learned to play by Euclidean rules because
2,000 years of geometrical training have engraved the grid in our
minds. But in the early nineteenth century, mathematicians
became aware of another kind of space in which lines cavorted
in strange and seemingly aberrant formations. This suggested the
existence of a new geometry. To everyone at the time, hyperbolic
space seemed pathological, because it didn’t conform to one of
Euclid’s most cherished principles, the so-called parallel
postulate. In this sense, it contradicted millenia of mathematical
wisdom and, frankly, it offended common sense.

But eons before the dawning of mathematical awareness,
nature had exploited this supposedly forbidden form, realizing
it throughout the vegetable and marine kingdoms. Outside our
boxes, the natural world teems with swooping, curling,
crenellated forms, from the fluted surfaces of lettuces and
fungi to the frilled skirts of nudibranchs and sea slugs and
anemones. Nature just loves hyperbolic structures.

What is also fascinating is that although physicists had
long thought the space of our universe must necessarily
conform to Euclid’s ideals, data coming from telescopic
studies of the early universe suggest the cosmological
whole may possibly be a hyperbolic form.

How does the concept of hyperbolic space shed light on
complexity?
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Let us start with Euclid’s fifth axiom regarding parallel
lines (this is also known as the parallel postulate). The
postulate states that, given a straight line and an external
point, there is no more than one line you can draw through
the point which will never meet the original line. All other
lines will slant with respect to this line and eventually
intersect it. Although this seems intuitively correct, it’s
actually far more complicated than Euclid’s other axioms
and, from the start, mathematicians felt haunted by the need
for a less complex articulation. If the proposition is really
true, they felt, then ought it not be provable from other,
simpler axioms (Fig. 1)?

If you think there isn’t a problem here, then consider the
example of a sphere. That’s a surface which forms a
geometry very different to the plane because now you’re
talking about a curved surface. Immediately, we are faced
with a question: what does it mean to talk about straight
lines in a curved space? Mathematically, a straight line may
be generalized to the concept of a geodesic, a term that
defines the shortest path between two points. Airlines use
such geodesics when charting the paths of international
flights, which often look curved on a flat map but are
“straight” in relation to the globe itself (Fig. 2).

With respect to a sphere, we notice that the geodesics are
not infinite, as they are on a plane, but finite—inevitably
connecting back up on themselves. Thus, on the surface of
a sphere, there are no straight lines through a point that do
not meet the original line. Whereas, on the plane, there is
always one non-intersecting straight line; now, we have a
geometry in which all lines meet. Still, Euclid’s postulate
holds since it states there can never be more than one line
through a point that doesn’t meet an original line, and on a
sphere there are none.

But how do we know there isn’t some other surface in
which there may be two or even more parallels?

The idea that one might not be the limit struck terror into
mathematicians’ hearts, and evoked an almost moral
outrage. For hundreds of years, they sought to prove that
any alternative to the single parallel line model was
impossible—they really thought that if the parallel postulate
was violated and more than one parallel was allowed, logical
chaos would ensue. Finally, in the nineteenth century, this
effort exhausted itself and mathematicians accepted that the

parallel postulate actually isn’t necessarily true. It is true on
an ordinary plane, but it isn’t true “always.”

So what exactly is hyperbolic space?
To put it into the terms of the nineteenth-century English

mathematician John Playfair, there exists a space in which,
given a line and an external point, there is actually a
multitude of other straight lines that intersect with the point,
yet do not meet the original line. Instead of there being just
one parallel, there are many. In fact, there are infinitely
many. Bizarre though this may seem, the situation gives rise
to a consistent geometry. In homage to this abundance of
parallels, mathematicians named it the hyperbolic plane.

At this point, readers may object that the lines in the
illustration depicting hyperbolic space (below) don’t look
straight—but that’s just because we are trying to see them
from our limited Euclidean perspective. From the point of
view of someone inside the hyperbolic surface, all these
lines would be perfectly straight and none would meet the
original line (Fig. 3).

Still, it is one thing to know that something is logically
possible and quite another to understand it. Like the blind man
and the elephant, hyperbolic space appears in different guises
depending on how we approach it. Late in the nineteenth
century, the French mathematician Henri Poincaré devised a
model of the entire hyperbolic plane within a circular
disc. In reality, the hyperbolic plane is infinitely large—
like the Euclidean plane, it goes on forever. So we must
make some compromises to view it within our Euclidean
framework. The Poincaré compromise is to represent angles
truly—but while distorting scale.

Fig. 2 A diagram of geodesic lines on a curved surface. Credit:
Institute For Figuring

Fig. 1 A Euclidian diagram of parallel lines. Credit: Institute For
Figuring
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Regarding the Poincaré disc model from our Euclidian
perspective, the triangles appear to be decreasing in size as
we move towards the perimeter. But viewed from inside the
disc, every triangle is the same size. Identical, equal-sided
triangles stretch endlessly outwards towards an infinite
boundary (Fig. 4).

The twentieth century Dutch artist, M.C. Escher, who
learned of hyperbolic space from the Canadian geometer
Donald Coxeter, explored the endless symmetries inherent
in the hyperbolic plane with a series of wonderful illustrations.
In Circle Limit III, red, green, blue, and yellow fish splash
about in a symphony of triangles and squares. In Circle Limit
IV, angels and demons flutter in a hyperbolic trinity, fanning
out from a central point to fill the space with hexagons and
octagons. Again, within their Poincaré discs, the angels and

demons and fish fill their worlds to the bounds of infinity if
only we step into the space with them (Figs. 5 and 6)

Isn’t there a more accurate, concrete way to visualize
hyperbolic space?

Up to nearly the end of the twentieth century, most
mathematicians believed it was impossible to construct
physical models of hyperbolic forms—in spite of the fact
that nature had been doing just that for hundreds of millions
of years in the production of such life forms as kelps,
corals, sponges, and nudibranchs.

Then in 1997, Latvian mathematician Dr. Daina Taimina
finally worked out how to make a model of hyperbolic space
with crochet. She based her discovery on a suggestion that
had been put forward in the 1970s by the great American
geometer William Thurston. He noted that one of the
qualities of hyperbolic space is that as you move away
from any point, the space around it expands exponentially.
He was able to model a small part of this using paper
anulii; however, these models were hard to make, hard to
handle, and inherently fragile.

Having spent her childhood steeped in feminine handi-
crafts, Taimina realized that the essence of this construction
could be implemented with crochet by increasing the
number of stitches in each row. As one increases, the
surface naturally begins to ruffle and crenellate. The beauty
of her method is that many of the intrinsic properties of
hyperbolic space become visible and can be directly
experienced by playing with these models. They’re really
very tactile forms.

Fig. 5 Circle Limit III, M.C. Escher’s rendering of flying fish. Credit:
Institute For Figuring

Fig. 4 A diagram of the Poincaré disc model. Credit: Institute For
Figuring

Fig. 3 A diagram of parallel lines in hyperbolic space
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For instance, geodesics, or straight lines, can be sewn
onto the crochet texture for easy examination. Though the
stitched lines in the model appear curved, folding along
them demonstrably produces a straight edge. Here, it is
obvious that the Euclidean parallel postulate is violated. In
the model shown, there are three straight lines that pass
through a point external to the bottom line. None of these
upper lines ever intersects this original line. Handling this
construction, you can physically fold along each line and
verify materially that Euclid’s axiom does not necessarily
hold (Fig. 7).

What insights about evolution can we draw from
hyperbolic space theory?

Taimina’s crochet techniques allow us to make a great
variety of hyperbolic constructions by varying the rate of
increase of stitches. If you stick to mathematical perfection
you don’t get a lot of variation, but if you deviate a little
from the perfect geometry, you get this huge variety of
forms. And that’s really what nature is doing. Just as you
don’t get perfect spheres or circles in the natural world,
neither do you get perfect hyperbolic planes. But the
variety of deviations is a great deal richer and more
interesting, and this is what we can model with crochet.

Crochet models of hyperbolic space come in a Darwin-
ian variety of shapes and forms. Some resemble kales and
kelps, others evoke the animal magnetism of sea slugs or
anemones, while others still call to mind the abstractions of
the Sydney Opera House. Surfaces may be delicate and lacy
or stiff and meaty, fabricated with a needle-fine hook using
threads of cotton and silk, or solidly built from thick

worsted wools and ropey synthetics. The choice of yarn, the
size of hook, the style of stitch and, most importantly, the
rate of increase of the stitches all affect the finished model.
Though the process is strictly algorithmic, the possible
variations are infinite. One really amazing parallel here is
that this is really like varying the DNA code of living
things—with slight shifts in the DNA, you can get big
changes in the morphology of the organism, and the same
thing happens when you vary the code or algorithm
underlying these crochet forms (Figs. 8, 9, and 10).

There is a very good reason why marine organisms take
on a vast variety of hyperbolic forms: this geometry realizes
surfaces with maximal area in a limited volume, thus

Fig. 8 Crocheted renderings of hyperbolic space models formed with
differing stitch increases (compare Figs. 9, 10). Credit: Institute For
Figuring

Fig. 7 Fold lines indicating parallel lines on a crochet rendering of
hyperbolic space. Credit: Institute For Figuring

Fig. 6 Circle Limit IV, M.C. Escher’s rendering of angels and
demons. Credit: Institute For Figuring
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providing enhanced opportunity for filter feeding by sessile
creatures.

My organization, Institute For Figuring, has been
extending the techniques developed by Dr Taimina—she
really sticks with the perfectly geometric forms, whereas
we’ve been branching out to explore the more organic
forms that arise when you relax from that perfection. Over
the past 3 years, we’ve had lots of workshops and taught
other people to do this, and we find that everyone who
takes this up seriously seems to develop their own
variations—often, things that we had not thought of. So
it has become like a giant world-wide experiment in
practical evolution. In a very real sense, our crochet reef

organisms are evolving. Now we’ve got a very wide
taxonomy of hyperbolic crochet “species” and the range
of possible forms seems to be endless.

In closing, does a knowledge of hyperbolic space inform
your spiritual views?

Escher was inspired by his explorations of hyperbolic
space to visit the Alhambra Palace, in Spain, the apotheosis
of the Arab world’s incredible tradition of work in the medium
of tile. Now the Moors believed that repeated patterns
connote the divine, so, if you follow that line of thought,
you might conclude that Heaven would be a hyperbolic space.

More information about the crochet reef project can be
seen on the IFF website at www.theiff.org.

Fig. 10 Crocheted renderings of hyperbolic space models formed
with differing stitch increases (compare Figs. 8, 9). Credit: Institute
For Figuring

Fig. 9 Crocheted renderings of hyperbolic space models formed with
differing stitch increases (compare Figs. 8, 10). Credit: Institute For
Figuring
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