
Christensen and Lombardi  
Evolution: Education and Outreach           (2024) 17:10  
https://doi.org/10.1186/s12052-024-00202-3

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Evolution: Education and Outreach

Computational thinking through the lens 
of biological evolution learning: enhancing 
understanding through the levels of biological 
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Abstract 

Research on exploring the relationship between computational thinking and domain specific knowledge gains (i.e. 
biological evolution) are becoming more common in science education research. The mechanisms behind these 
relationships are not well understood, particularly between computational practices and biological evolution con-
tent knowledge. Increased computational complexity (i.e. simple to complex) may support a greater comprehension 
of scales or levels of biological organization (i.e. micro to macro) within the context of biological evolution learning. 
We made use of quantitative methods from qualitative work in the form of coding and relational analysis to identify 
which biological levels of organization students addressed, how students made connections between these levels 
and the level of computational complexity displayed during evolution learning with the use of two computational 
interventions. The aim of this study was not only exploring the biological levels and biological level connections 
made during the computational thinking interventions, but also analysis of the differences between these two 
interventions. The results illuminated that use of specific biological levels, biological level connections and differences 
in computational complexity were distinguishable and there were significant differences between the interventions. 
These factors may contribute to better understanding of biological evolution knowledge gains.

Keywords Biological evolution, Computational thinking, Biological scales, Computational complexity, Evolution 
education

Introduction
Computational thinking (CT) allows students to derive 
meaning from data across disciplines (Nardelli 2019), 
and learning biological evolution is no exception (Chris-
tensen and Lombardi 2023). CT has become increasingly 
integrated within K-12 science curricula across the globe 

(Hsu et  al. 2019; Sengupta et  al. 2013), yet life science 
educators struggle with its implementation (Shute et  al. 
2017; Nardelli 2019). We define computational thinking 
as thought processes involved in  situating problems so 
their solutions can be carried out by an information pro-
cessing agent (Christensen and Lombardi 2020; Selby and 
Woollard 2013) and parallels computational science; the 
intersection between computer science, mathematics and 
a scientific discipline. The definition is quite vague and 
varies across and within disciplines. Educators typically 
describe CT as students’ knowledge development about 
designing computational solutions to problems, algorith-
mic thinking, and coding (Angeli and Giannakos 2020).
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Most CT based educational research (situated at 
the level of the learner) involves the identification of 
increased knowledge gains, problem-based instruction, 
access, game design, robotics, engagement and or mod-
eling (Wang et  al. 2021; Berland and Wilensky 2015). 
These studies fail to address the relations between spe-
cific: (1) CT components (input, integration, output, and 
feedback), (2) computational complexity and (3) specific 
domain content (e.g., biological evolution; Christensen 
and Lombardi 2020). Learning progressions which merge 
computational thinking with biological evolution con-
tent, support and outline the idea that as computational 
thinking skills become more complex for students, stu-
dent understanding of biological evolution improves 
(Christensen and Lombardi 2020). The use of computa-
tional thinking to learn biological evolution learning pro-
gression (LBECT-LP) has been supported quantitatively 
by assessments of both evolution and computational 
thinking knowledge (Christensen and Lombardi 2023). 
The mechanism and nuances of how computational 
thinking supports biological evolution learning is less 
understood. Our study sought evidence for the mecha-
nism of biological evolution learning through exploring 
the idea that use of computational thinking may result 
in student engagement with different biological scales 
of organization (which may have a relationship to previ-
ously established quantitative knowledge gains; [Chris-
tensen and Lombardi 2023]).

Learning across scales in biological evolution through 
computational thinking is unexplored. Evolutionary tran-
sitions and multiple levels of complexity are often mini-
mized through typical learning dynamics (Vanchurin 
et  al. 2022). Bidirectional information flows between 
scales, predictive coding, and active inference may sup-
port scale-free conceptual tools for learning complex 
multiscale systems (Fields and Levin 2020). Our research 
supports life science educators in addressing the teach-
ing of scales to optimize computational thinking integra-
tion into discipline specific topics such as evolution. For 
example, lessons using computational thinking progres-
sions may explicitly address the gap in student under-
standing between various scales more efficiently than 
other modalities especially if the used scales are made 
apparent and discernable. Certain biological levels and 
biological level connections may attribute to greater bio-
logical evolution learning.

As a society, we are harnessing biological data at a 
much faster rate than we can understand it due to a 
lack of computational implementation (Chen et  al. 
2016). The current gap between biological and compu-
tational cultures is particularly large (Rubinstein and 
Chor 2014). In the few CT studies focusing on evolu-
tion, students become embodied and immersed in their 

models through agent-based approaches or user-friendly 
interfaces (Guo et al. 2016; Sengupta et al. 2013; Wilen-
sky and Reisman 2006). Students often fail to develop 
understanding of evolution between organizational units 
(or scale levels) in biology as evidenced by recent educa-
tional research efforts which attempt to address this gap 
(Jördens et al. 2016; Dauer et al. 2013). Reasoning is often 
bound to particular scales or levels, and conceptual link-
ages may be lacking among these scales as crossing these 
levels is inherently challenging (Nehm 2019) but required 
in holistically understanding evolution particularly due 
to emergent phenomena. This emergent phenomenon 
gives life to the central idea in biology that the whole is 
greater than the sum of its parts. This inability to span 
organizational levels may be due to the simplicity of the 
computation often used during instruction (Guo et  al. 
2016), the restrictive nature of the lesson, or the scaffold-
ing provided by the instructor. Use of threshold concepts 
such as spatial or temporal scale are affected by teach-
ing context and require further exploration (Göransson 
et al. 2020) therefore we sought to explore presence and 
relationship of biological levels of organization through 
their entirety and not restrict our scope to specific levels. 
Technological tools have aided biologists in the past (e.g. 
microscopes, electronic probes or digital spreadsheets), 
but oftentimes educators use these tools at one particular 
biological level of organization. Our purposeful distinc-
tion of biological scale distinctions from micro to macro 
is intuitive as many biologists, respective institutions and 
specific units within curricula differentiate themselves as 
microbiology if their primary focus is on what we define 
as microscales. Computational thinking enables students 
to transcend these organizational levels in ways previous 
tools could not. This is particularly due to the nature of 
computation and its inherent ability to display emergent 
properties to the user.

In the present study, we investigated student artifacts 
(submitted samples of student work) in order to identify 
the level of computational complexity, presence of bio-
logical scales of organization as well as explicit connec-
tions made between these scales for two computational 
interventions. In previous quantitative investigation 
(Christensen and Lombardi 2023) Students’ biological 
evolution and CT knowledge gains were significant and 
differed between these interventions. These interven-
tions were developed based on the Learning Biological 
Evolution through Computational Thinking Learning Pro-
gression (LBECT-LP; Christensen and Lombardi 2020, 
2023) which emphasizes these micro and macro scales 
and has respectively paired with both computational 
thinking and specific corresponding NGSS standards at 
levels of increasing complexity. To our knowledge, no 
previous investigations have robustly explored relations 
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and mechanisms between: students’ knowledge of com-
putational complexity and evolution across various scale 
levels of biological organization. Our study is a follow 
up based on previous quantitative results; we quanti-
fied qualitative work to address the following question: 
In what ways do students’ computational products (arti-
facts) constructed during instruction promoting biologi-
cal evolution concepts and computational processes (i.e., 
input, integration, output, and feedback) display:

(RQ1) Student identification and understanding of dif-
ferent scale levels of biological organization (i.e., from 
molecular to ecosystem scales); and

(RQ2) Different levels of complexity in computational 
thinking (i.e., simple, developing, and complex)?

Results from the current research study support the 
LBECT-LP; as different discipline specific content (bio-
logical scales), and computational complexity resulted 
in distinct differences among student artifacts related 
to biological level connections and accuracy. It may be 
advantageous for practitioners to more deeply implement 
computation into their biology instruction, particularly 
to emphasize biological concepts such as evolution across 
scales. Computational thinking is a novel, uncharted 
integral part of science learning. It encourages student 
engagement with emergent properties by providing 
mechanisms for students to navigate biological levels of 
organization to explore biological evolution; providing a 
meaningful platform and framework to explore how in 
biological systems the whole may be greater than the sum 
of their parts.

Theoretical framework
The framework represents theoretical perspectives from 
educational psychology, science education research, and 
the biological sciences. Our constructivist framework is 
grounded in the idea that students learn through spe-
cific cognitive processes in their experiences with the 
computational components given the computational 
contexts. Students use prior knowledge of the biological 
scale levels of organization to actively engage through 
computation in general stages (simple through com-
plex). Research exists on the acceptance, epistemologi-
cal beliefs and cognitive dispositions (Sinatra et al. 2003) 
around biological evolution. Age appropriate evolution 
related misconceptions held by both biology teachers 
and students (Yates and Marek 2014) may require con-
ceptual change (Heddy and Sinatra 2013). Specific topics 
to support evolution have been explored, such as natural 
selection (Brumby 1979), and tree thinking (Novick et al. 
2014). Specific learning progressions and mechanisms 
(Gašperov et  al. 2024) have been developed in learn-
ing biological evolution, including agent-based mod-
eling (Guo et al. 2016), and different scale levels from the 

micro scale (Burmeister and Smith 2016) through to the 
macro scale (Nesimyan-Agadi et al. 2023) and a variety of 
testing instruments (Perez et  al. 2013) have been devel-
oped in supporting these efforts and frameworks. Testing 
the idea that biological evolution learning is supported by 
computational thinking is relatively contemporary (Aras-
toopour Irgens et al. 2019).

Computational thinking interventions may vary in dif-
ferent ways based on the complexity and disciplinary 
focus (micro versus macro scales). Disciplinary focus 
of computational interventions may in turn vary by: (1) 
the general levels of biological organization exhibited by 
participants and (2) the connections made between the 
biological levels. This novel understanding of differences 
between the interventions may shed light on differences 
between knowledge gains as displayed by previously pub-
lished quantitative assessments from the same study. In 
this section we expand upon this framework by describ-
ing the biological scale levels as well as the complexity of 
computation.

Previous study using the LBECT‑LP
We grounded this study’s framework using the LBECT-
LP (Christensen and Lombardi 2020) which specifies 
unique (1) computational components: input, integra-
tion, output and feedback, (2) computational complex-
ity: simple, moderate and complex, (3) computational 
perspectives: computational context, computational 
process and computational product. The LBECT-LP 
frames biological evolution through specific ordered top-
ics which are anchored to biological unity, and diversity, 
which generally relate to topics at smaller and larger 
biological scales respectively. In the present study we 
specifically focus on the levels of biological organiza-
tion and complexity of computation because the results 
from our previous quantitative study revealed statisti-
cally significant and meaningful knowledge gains in both 
biological evolution and computational thinking after 
instruction integrating biological evolution concepts 
with CT (Christensen and Lombardi 2023). One of the 
two interventions, which purposefully differed in scale 
produced significant knowledge gains in biological evo-
lution, therefore exploring the scales and relationships 
that students used is the next logical step in understand-
ing the mechanism of the knowledge gains as related to 
the scales. It is important to note that the interventions 
to test biological evolution (BECKI) and computational 
thinking knowledge (CTCKS) were designed and specifi-
cally so that there were questions at all biological levels 
and specific to input, integration, output and feedback 
respectively. These assessments were validated through 
content and face and validity practices by profession-
als and rated as having acceptable reliability through 
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acceptable Cronbach alpha scores. The quasi-experi-
mental research design (pre-test and series of two post-
tests) allowed for the testing of computational thinking 
knowledge as well as biological evolution knowledge for 
participants in two separate groups whom experienced 
different interventions; Participants only experienced 
one intervention of the two. All participants experienced 
one post-test after a traditional lesson and after one of 
the computational thinking interventions to teach biolog-
ical evolution. Based on the inherent curriculum and the 
needs of the students and teachers, one intervention was 
designed to lean towards microscales of biology (BLAST 
intervention) while the other was partial to macro scales 
of biology (H-W Weinberg intervention). In the present 
study we quantified qualitative analyses to more deeply 
explore these previous quantitative results in knowl-
edge gains that were derived after the use of two unique 
computational interventions, with the aim to provide 
highly unique insights for both teachers and researchers 
(Schulze 2003).

Biological scale levels of organization and computation
Specific biological scale levels (often referred to as levels 
of organization) and associated descriptions differ among 
the various biological disciplines (e.g., molecular biology, 
cellular biology, botany, ecology, etc.; Schneeweiß and 
Gropengießer 2019). The use of computational method-
ologies at and between these scales (sometimes referred 
to as systems biology) has tremendously improved fields 
such as pharmacology, eDNA research, and precision 
medicine for complex diseases (Tavassoly et  al. 2018). 
Many biological education studies focus on phenom-
ena at one biological scale level (McEntire et  al. 2021), 
yet most biological functions (including evolution) are 
a result of mechanisms that occur at various biologi-
cal scale levels of organization (Reece et  al. 2014). We 
consider biological scale levels based on common text-
book descriptions: Atoms, molecules, organelles, cells, 
tissues, organs, organisms, populations, communities, 
ecosystems and the biosphere (Campbell et  al. 2000; 
Christensen and Lombardi 2020).

Definitions between scale levels may be: (1) the part-
whole relationship, (2) the flow of information rela-
tionship, (3) the matter-energy relationship, (4) the 
coevolutionary relationship and or (5) the phylogenetic 
relationship (Schneeweiß and Gropengießer 2019). 
Bonabeau (2002) claimed that computation should be 
used to explore agents and their interactions, which fol-
low specific instructions, allowing emergent properties 
to become apparent only at the scale level of collective 
activities. For example, atoms follow specific rules which 
make up molecules performing certain functions in cells, 
which in turn, make up tissues within organisms. Both 

the concentration of atoms and rules that cells follow 
affect the physiology of organisms. A common phenom-
enon that occurs and has implications at all scale levels is 
variation, an essential component of evolution (McEntire 
et al. 2021).

Biological evolution is a core idea that is expected 
to support biology learning as it is a link between con-
cepts and acts as an exploratory mechanism among all 
biology units. Tibell and Harms (2017) claim that varia-
tion, heredity, selection, randomness, probability, spa-
tial scales and temporal scales presented in tandem with 
visualizations are imperative to understand evolution, as 
these ideas occur at and between all levels. Contempo-
rary evolutionary computational practices fail to display 
major organizational transitions due to a primary focus 
on small populations, strong selection, and use of direct 
genotype to phenotype mappings (Miikkulainen and 
Forrest 2021). Computational evolution is an emerging 
field which has the potential to solve complex biological 
issues through the production of algorithms that can eas-
ily, quickly, and efficiently integrate across all scale levels 
(Banzhaf et al. 2006).

The act of learning about various biological scales fre-
quently encourages the use of various tools (such as a 
microscope for the micro levels). Instead of focusing 
on these tools to explore the levels (and simultaneously 
removing interference), computational thinking may 
allow students to identify and focus on the similarities 
that are common to the levels or the forces and the phe-
nomena that act between them. Wilensky and Reisman 
(2006) used computational thinking to promote embodi-
ment at one scale (i.e. thinking like a ‘wolf ’ in order to 
properly assign “wolf-like” parameters such as “eating 
sheep”) however; computational thinking may also facili-
tate this embodiment at various scales (i.e. biological 
levels). The cognitive processes associated with compu-
tational thinking may allow students to better holistically 
understand phenomena (such as biological evolution) by 
using the same mode of thinking to assign parameters 
to genes while simultaneously observing emergent pro-
cesses at other levels such as population dynamics. This 
is the mechanism behind how a whole may be more than 
the sum of a systems’ parts. Students may similarly assign 
parameters to the resulting population dynamics (output) 
if necessary (in the form of feedback).

“Slippage between levels” is sometimes used to 
describe the disconnects (or student inability) to make 
micro to macro scale connections (Brown and Schwartz 
2009). “Yo-yo” learning encourages students to think 
backwards and forwards to prevent this slippage (Knip-
ples 2002). Students’ struggle to make connections 
between micro and macro levels of evolution through 
the use of computation (Guo et al. 2016), potentially due 



Page 5 of 31Christensen and Lombardi  Evolution: Education and Outreach           (2024) 17:10  

to the simplicity of computation scaffolded into a lesson. 
Generally speaking, the more biological scale levels stu-
dents can relate properly (e.g. gene, protein and variation 
within a population), the greater understanding they have 
of phenomena (Jördens et al. 2016; Wilensky and Resnick 
1999; Penner 2000). If students understand that genes 
can vary, but not that the gene variation affects proteins 
produced, the physiology of individuals or physical dif-
ferences among populations which undergo evolution 
over time, they may not develop complete understanding 
of evolutionary phenomena. Christensen and Lombardi 
(2020) emphasized and outlined the importance of unity 
and diversity, aligned with recent reformed-based science 
education frameworks, via the LBECT-LP by intertwin-
ing biological evolution and computational knowledge 
across scales through increasing complexity; computa-
tion supports biology learning across scales as evidenced 
by quantitative study (Christensen and Lombardi 2023).

Complexity of computation
Educators tend to be unfamiliar with CT practices (Rah-
ayu and Osman 2019) and there are no clear methods 
of CT assessment (Mueller et al. 2017). This poses diffi-
culty in integrating CT through daily classroom practices 
(Basso et al. 2018) particularly for the life sciences. Three 
aspects of computation within the context of a classroom 
setting are the: (1) computational context (as provided by 
instructor), (2) computational product (as produced by 
student) and (3) the computational process (actual act of 
student development of and with the computational com-
ponents) (Christensen and Lombardi 2020). The student’s 
computational process is the variety of ways that students 
make meaning about content through computational 
thinking as facilitated by the instructor which includes 
the student reasoning and implementation of four com-
putational components: input, integration, output and 
feedback (as modified from Weintrop et al. 2016; Chris-
tensen and Lombardi 2020). The computational product 
is any artifact produced by students which may be in the 
form of a verbal testimonial, assessment, questionnaire, 
project, code etc. whereas the computational context 
are the factors described by the teacher. Similar to sci-
entists, the computational process may allow students to 
predict phenomena at a variety of biological scale levels, 
resulting in a higher level of cognitive engagement and 
deeper understanding of evolution (Sinatra et  al. 2015). 
For example, as students solve problems (in conjunction 
with the various computational components), they may 
think more deeply about data (input), relations between 
various data and variables (integration), their analy-
ses and results (output), and possibly re-modeling these 
initial results (feedback). Computational thinking fully 
encompasses this scientific process through use of the 

computational components. In a very general research 
example, input data may be a series of DNA sequences 
from various organisms, integration may be a formula to 
relate similarity between the sequences whereas output 
may be statistical values representing the similarity and 
feedback re-ordering the sequences in terms of similarity.

The computational context will be similar among stu-
dents if lectures or assignments are presented to the class 
as a whole. Assessing computational artifacts based on 
specific parameters can allow researchers and eventu-
ally educators to determine the displayed complexity of 
the computation. Students are expected to move from a 
simple toward a complex computational level. A simple 
computational context may include step-by-step instruc-
tions provided by an instructor, whereas a complex com-
putational context would present research questions 
which are open-ended. Simple computational products 
may involve output from interface friendly websites, or 
Google sheets with simple and or incorrect explanations 
regarding the computation or phenomenon; whereas 
complex computational products include software devel-
opment (using a coding language) that merges the bio-
logical phenomenon with sophisticated computational 
tools. The LBECT-LP encourages use of the computa-
tional product to determine growth and mastery of com-
putation at the individual level. Although the LBECT-LP 
is specific in computational components and complexity, 
it is purposely vague in what evolutionary based content 
may be represented and assessed through the complexity 
for both classroom and research use. It is important to 
note that modeling is a small but an integral part of com-
putational thinking.

The present study
We hypothesized, that infusing computation within evo-
lution teaching could promote knowledge across unique 
levels of biological organization and through computa-
tional complexity as suggested by our two hypotheses: 
(1) participant artifacts would reveal discernible relation-
ships between computational intervention exposure and 
levels of biological organization and biological level con-
nections (RQ1). In addition, we speculated that students 
with stronger biological and or computational knowledge 
(as derived from Christensen and Lombardi 2023 quan-
titative analysis) would display use of different biological 
levels, different amounts of biological levels, make differ-
ent numbers of biological level connections, and make 
specifically larger or smaller biological connections (i.e., 
connections that span a larger range) within their arti-
facts. (2) Artifacts would reveal discernible relationships 
between computational intervention exposure and level 
of computational complexity. It would be reasonable to 
speculate that students with stronger computational or 
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biological knowledge (as derived from Christensen and 
Lombardi 2023 quantitative analysis) would display dis-
tinctly different levels of computational complexity or 
that the interventions may induce different levels of com-
putational complexity from students.

Methods
In the present study we performed a qualitative (coding 
artifacts) analysis and quantified our analysis to supple-
ment results from our quasi-experimental, within-sub-
jects repeated measures research study (Christensen and 
Lombardi 2023). The purpose of this study was to further 
investigate the effectiveness and nuances of the LBECT-
LP through exploring complexity of computational 
thinking and unique use of biological levels of organiza-
tion. Specifically, to identify participant use and explicit 
associations of different levels of biological organiza-
tions (RQ1) and the levels of complexity of computa-
tional thinking (RQ2) while students learned biological 
evolution.

Setting and participants
We conducted the present research study within the two 
large public high schools (East and West School, pseu-
donyms) within the Pine Bay School District (pseudo-
nym), located in the mid-Atlantic region of the United 

States. A researcher involved in the study is also an edu-
cator within the district, as a form of action research 
(referred to as researcher teacher). Study participants 
were enrolled in Advance Placement (AP) Biology (Col-
lege Board 2019) for the 2019–20 academic school year, 
within one of four classes taught by one of two teachers. 
AP courses are the most rigorous courses offered at the 
high school for each subject, they follow a standard inter-
national curriculum through College Board and prepare 
students for an end of the year exam in which they may 
earn college credits. Each of the two AP biology teachers 
resided in one of the schools in the district was respon-
sible for two AP biology classes each. A total of fifty-one 
student participants participated in the study, with n = 21 
participants at West School and n = 30 participants at 
East School. About 42% of the participants (n = 27) iden-
tified as male. Table 1 shows the number of students and 
demographics at each school.

Procedures
The length of the full administration of both compu-
tational interventions was approximately four weeks, 
and we used a quasi-experimental research design (see 
Table  2). When limited to quasi-experimental design 
a counter-balance comparison of interventions among 
class groups is more robust than comparing changes over 

Table 1 School demographic statistics

Neither high school is entitled to Title I funding. These statistics were obtained through the US News and World report for the 2016–2017 school year (the most recent 
year in which data were available; Christensen and Lombardi 2023; US News World Report, 2017)

East High School West High school

Number of students 1558 1285

White 84% 77%

Hispanic 7% 13%

Black 6% 7%

Asian 3% 3

American Indian/Native  < 1%  < 1%

Multiracial  < 1% 1%

Female 46% 49%

Male 54% 51%

Free/Reduced Lunch (Economically Disadvantaged) 14% 29%

College and Career Readiness 30th percentile 30.5 percentile

Staff to student ratio 14:01 13:01

Graduation Rate 94% 94%

Math Proficiency 23% 13%

Reading Proficiency 28% 37%

National Percentile on AP exams 83% 75%

Proportion of 12th grade students who took an AP course 43% 35%

Students who score over a 3 on AP test 30% 23%

12th grade students who score over a 3 on AP test 60% 68%

Pass rate (over 3) on AP Exams 59% 54%
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time in one class group, who did the computational inter-
ventions only, to another class group, who did traditional 
lessons only when classroom placement has already dic-
tated the independent groups (Cook and Campbell 1979). 
These limitations were unavoidable because we could not 
limit student learning nor dictate truly random groups, 
however, other indices of homogenization have been 
addressed and the test design involves a uniform series of 
testing and artifact collection.

All four classes were given pre-tests and a series of post-
tests after each biological evolution lesson. Two lessons 
were traditional in nature and taught by their teacher and 
two were the computational interventions taught by the 
researcher teacher; see Table  2). The artifacts collected 
and analyzed in the present study were collected after 
the computational interventions only with the intention 
to support the previous qualitative analysis on computa-
tional and evolution knowledge gains as derived from the 
pre- and post-test analysis (Christensen and Lombardi 
2023). There were no significant knowledge differences 
between class grouping before presenting the interven-
tions through calculations of Mahalanobis distances and 
z-scores of the pre-tests. Artifacts include samples of 
submitted student work which were open ended ques-
tions designed to elicit reflections of interactions with 
the computational tools. These artifacts were researcher 
made based on the AP lab manual, the biological con-
tent and the computational tools and submitted digitally 
to the respective teachers through an online classroom 
management tool.

Computational interventions
We developed two computational interventions, which 
were modified lessons from the AP Biology Lab Manual 
(College Board 2019), in order to maintain the integrity 
of the AP biology curriculum and to reduce stress for the 
instructors and student participants while maintaining 
the integrity of the study design. It is important to note 
that these interventions modified the original content 

and objectives and made them more computational in 
nature as per specific guidelines in the LBECT-LP, and we 
assumed some predictive power of these materials due to 
their original publication within the AP curriculum. The 
biological content and associated computational context 
differed between intervention groups and there was no 
true control group. The shared feature of both interven-
tions was biological evolution taught through compu-
tational thinking. These activities naturally incorporate 
biology and computation yet many activity descriptions 
found in standard educational manuals are unclear for 
instructors and the provided examples are outdated 
(Moreno-León et al. 2017).

For each intervention we developed a novel electronic 
slide presentation incorporating the computational 
components with the appropriate biological evolution 
concepts, classroom activities, instructional sheets, and 
respective worksheets with questions to be completed 
during the interventions (used as artifacts). During the 
computational interventions, the researcher teacher 
described the four components of computational pro-
cesses (input, integration, output and feedback), within 
the appropriate biology context; Intervention 1 focused 
on the Hardy Weinberg Lesson and Lesson 2 focused 
on the development of phylogenetic trees through 
DNA analysis. The researcher teacher then passed out 
an assignment sheet to each participating student and 
allowed them to complete the assignment on a Google 
Doc which included open ended questions and a loca-
tion to link their computation. Students submitted 
work individually to their instructors on their Google 
Classroom page, and it was forwarded to the researcher 
teacher. Students worked during class and were allowed 
to finish the assignment after school hours. Researcher 
teacher to participant interactions and participant 
interactions were not prompted, but also not dis-
couraged. Aside from biological and associated com-
putational context the interventions and associated 
questionnaires were as comparable as possible. The two 

Table 2 Quasi-experimental study design

*Indicates when artifacts were collected (Christensen and Lombardi 2023)

Class Time 1
(Pretest)

Lesson/teacher Time 2
(Posttest 1)

Lesson/teacher Time 3
(Posttest 2)

A BECKI and CTCKS Traditional H-W Lesson with West School 
Teacher

BECKI and CTCKS Lesson 2: Computational BLAST Lesson 
with Researcher Teacher*

BECKI and CTCKS

B BECKI and CTCKS Computational H-W Lesson 
with Researcher Teacher *

BECKI and CTCKS Lesson 2: Traditional BLAST Lesson 
with West School Teacher

BECKI and CTCKS

C BECKI and CTCKS Traditional H-W Lesson with East School 
Teacher

BECKI and CTCKS Lesson 2: Computational BLAST Lesson 
with Researcher Teacher*

BECKI and CTCKS

D BECKI and CTCKS Computational H-W Lesson 
with Researcher Teacher *

BECKI and CTCKS Lesson 2: Traditional BLAST Lesson 
with West School Teacher

BECKI and CTCKS
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lessons focused on primarily micro versus macro scales; 
however, they were not restricted to those scales. 
The levels that students engaged with (and identified) 
were somewhat emergent and identified in the results. 
Within each intervention we explored the scales identi-
fied and connected by students as well as the associa-
tions with knowledge gains (from previous study) and 
novel understanding.

Computational Hardy–Weinberg (H‑W) Lesson 
(Computational Intervention 1)
Computational intervention 1 consisted of a lesson 
around the Hardy–Weinberg (H-W) Law of Genetic 
Equilibrium. After the lesson students were shown an 
example Google doc with specific biological features of 
a hypothetical population and how the computational 
components related to this population. Participants 
were prompted to relate evolution and the change in 
allele frequency through the use of a computational tool 
(in Google Sheets) to demonstrate evolutionary phe-
nomena over many generations. Participants then inde-
pendently developed a hypothetical population with 
specific features, then used the H-W formula to display 
the allele frequency of the population in evolutionary 
equilibrium (i.e., not evolving). Participants then modi-
fied ratios based on a hypothetical event that would affect 
the environment (i.e. climate change, drought) by gener-
ating an appropriate algorithm. Participants observed if 
and how their population was evolving or not based on 
their working computation and application of the H-W 
equation. In cases when the population was evolving, the 
questionnaire sheets prompted students to write why 
(i.e., environmental changes, advantageous adaptations, 
human impacts etc.). Participants worked with computer 
programs such as Microsoft Excel or Google Sheets to 
develop a spreadsheet with all computational compo-
nents that mimicked two successive generations without 
environmental change and then two generations with an 
induced environmental change. Participants designed 
their computational products to display an output so 
that there was a single input value to influence the rest 
of the model. Participants were prompted to recognize 
input (single allele frequency value), integration (H-W 
equation and other written algorithms), output (result-
ing generations and graphs) and feedback (successive 
generation influence) within their models. Ten ques-
tions for students included items such as: “Identify what 
you observed in your populations and how it related to 
the H-W equation and evolution” and “Overall what did 
your results display; and how do these results display 
evolution?”.

Computational BLAST Lesson (Computational Intervention 2)
During computational intervention 2 the researcher 
teacher taught a lesson around phylogenetic trees and 
showed participants how to navigate the National Center 
for Biotechnology Information (NCBI) website (includ-
ing BLAST, which is a basic local alignment search tool) 
(Geer et al. 2019). Participants compared DNA and pro-
tein sequences to understand evolutionary relationships 
using computational tools (computational intervention 
2). Participants were shown separate examples of input 
(Google doc of sequences), integration (NCBI features) 
and output (phylogenetic tree and associated statis-
tics), then created their own phylogenetic trees based 
on a protein sequence of their choice. Participants were 
prompted to recognize input, integration, output, and 
feedback within their analysis procedure to support 
student awareness and interaction with computational 
thinking the way it is defined in the learning progression. 
Input involved the participant selecting either an amino 
acid or DNA sequence for their selected protein, while 
the integration was done by the BLAST tool within NCBI 
itself (code hidden from students). The output was in the 
form of a unique phylogenetic tree coupled with addi-
tional statistics. For this intervention, there was no form 
of feedback. Ten questions for students included items 
such as: “How do the DNA relationships compare to 
the morphology or what you initially thought about the 
relationships between these organisms?” or “What other 
questions might you ask about your protein or the evolu-
tionary relationships”.

Qualitative data collection: situated
Results from previous quantitative study (Christensen 
and Lombardi 2023) indicate that there was a main effect 
for overall computational thinking knowledge and evolu-
tion knowledge due to the computational lessons based 
on pre- and post-test analysis of two verified assessments; 
however, these gains were only significant for interven-
tion 1 (H-W lesson). Participants involved in this les-
son experienced a significant increase in computational 
knowledge, specifically at time 2 (which was directly after 
their computational lesson intervention) (Christensen 
and Lombardi 2023). These participants experienced a 
small non-significant decrease in computational knowl-
edge between time 2 and 3 indicating that knowledge was 
not retained through quantitative analysis of the second 
post-test. The present study used qualitative analysis on 
student artifacts collected after the computational inter-
ventions with the aim of probing more deeply into these 
relations and to better understand and enhance prior 
quantitative results (Bryman 2017). Quantitative analy-
sis in science education research is often overshadowed 
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by quantitative, as it is still favored by many researchers 
(Stanley and Robertson 2024), yet it may provide unique 
insight, particularly when done to supplement quantita-
tive analysis (Borrego et al. 2009, Eyisi 2016).

Coding analysis
In this section, we present the development and results 
of our coding analysis, then discuss the results of the bio-
logical level scoring and associations that emerged from 
the coding analysis (RQ 1). We follow this with the devel-
opment of the computational complexity rubric. We used 
the rubric to score computational complexity for the par-
ticipants’ written artifacts based on the LBECT-LP. We 
then present and discuss the associated computational 
complexity results (RQ 2).

To ensure the accuracy and reliability of coding, the 
author completed two rounds of analysis and revi-
sion, the second author verified the utility of the coding 
scheme and process. An educator of biology at the sec-
ondary level within the Pine Bay District coded 10% of 
the artifacts which resulted in an 93% agreement, which 
is considered a fairly high consensus for intercoder reli-
ability (Stemler 2004). Coders discussed the areas of 
disagreement and difficulty in coding at various points 
in the coding process, with the following sections pro-
viding more detail on how we arrived at our final coding 
scheme.

Conceptual and relational analysis of written explanations: 
biological levels (RQ1)
Content analysis has two major forms, conceptual anal-
ysis and relational analysis both of which we used to 
address RQ1. In conceptual analysis, a concept is chosen 

and the analysis involves quantifying its presence (Hsieh 
and Shannon 2005). Conceptual analysis is particularly 
important in science education research because it allows 
various terms (used by student participants) to represent 
a larger construct (identified by researcher). This allows 
the researcher to develop an appropriate concept defini-
tion (i.e., the concept of “cell”) with specific borderlines 
for rich results (i.e., neurons and eosinophils are two very 
different terms for the construct of “cell”). Explicit terms 
representing biological organization were the items we 
selected for within the participant data to answer RQ1 
and range from level 1 (L1) through L14 (see Table  3). 
These levels were selected prior to coding participant 
artifacts. Participant identifiers of these biological levels 
varied greatly due to the open ended nature of the inter-
vention questions.

Relational analysis is a specific form of content analysis 
which explores explicit relationships identified (by par-
ticipants) within texts. It provides higher levels of statisti-
cal rigor as compared to other qualitative methods used 
in educational research because it allows researchers to 
make specific inferences from participant artifacts (Rob-
inson 2011). It explores the instances in which partici-
pants made connections, and not solely identifying the 
presence of a concept for example (i.e. allele changes as 
it relates to populations versus the identification of allele 
changes or populations within artifacts alone). Artifacts 
were coded using relational analysis to explicitly identify 
if the participants made connections between biologi-
cal levels. This was more meaningful than identifying if 
the two levels occurred together through statistical 
means (i.e., a bivariate correlations). We also performed 
a relational analysis to identify and better understand 

Table 3 Biological levels identified from participant artifacts

Concept definitions modified from Campbell et al. 2000

Level Biological level Participant examples Concept definition

14 Biosphere No participants recognized this level The earth and interactions of its regions

13 Ecosystem The habitat, the environment Community of organisms and their physical environment

12 Community Biotic factors, all living organisms Interacting group of species in common location

11 Species Mus musculus, all dogs Group of organisms that can produce viable offspring

10 Population Bird population, the next generation Organisms of a species in a particular location within a given time

9 Organism The fish, the organism Discrete and complete individual living thing

8 Organ System Central nervous system, the bones Group of organs working together to perform function

7 Organ Heart, skin Group of tissues which perform a specific function

6 Tissue Blood, muscle tissue Similar cells which carry out a specific function

5 Cell Red blood cell, nerve cell Smallest structural and functional unit of an organism

4 Organelle Ribosome, mitochondria Specialized structures within a cell which perform a function

3 Macromolecule Protein, DNA Large complex molecule

2 Molecule Glucose, gene sequence Two or more atoms covalently bonded

1 Atom Oxygen, hydrogen ion Smallest unit of matter that contains its properties
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the nature of relationships participants made between 
these biological levels. There is a major gap in educa-
tional research around conceptual and relational coding 
analysis to quantify student use of biological levels and 
we have suggested in our framework that these levels are 
essential to learning biological evolution.

Defining biological levels of organization We examined 
the participant artifacts that were generated from ques-
tions in both interventions. The questions were designed 
to be answered during and directly after the interven-
tions (unanswered questions completed for homework). 
Questions were specific to the intervention and there 
was one shared computational question between the 
interventions (“Identify the input, integration, output 
and feedback”). Most questions within the interven-
tions prompted students to identify and describe com-
putational and biological components in an open-ended 
form (for example: “Identify what exactly you observed 
occurring in your populations” or “How does BLAST 
[computational tool] actually compare these [molecu-
lar] sequences?”). Due to participant choice to work with 
infinite biological scenarios (i.e., pick a protein of inter-
est), We had to examine participants’ answers in detail 
to identify which biological levels were present based on 
participant use of key biological words. We read through 
the participant artifacts multiple times until no new bio-
logical words (and associated biological levels) emerged.

Biological words within participant artifacts were used 
to classify the presence of biological levels based on the 
LBECT-LP. We derived concept definitions for the bio-
logical levels (Table 3) from Biology in Focus, a textbook 
written by Campbell, Mitchell and Reese (2000) which 
is accepted by AP biology curriculums and many college 
level biology courses.

We counted biological words if they “fit” one of the 14 
biological concepts. For example, if a participant wrote 
“neuron” (a type of nerve cell), that was counted as a bio-
logical word, classified and quantified as one attempt at 
the cellular level (L5). If a participant wrote “the envi-
ronment”, we classified it at the ecosystem level and it 
counted as one attempt at the L13 level. We defined 
these concepts based on important biological properties 
associated with each level. For example, molecules (L2) 
comprise macromolecules (L3) or environments are the 
interaction of the living and nonliving components of an 
ecosystem (L13). We recognize that some of our defined 
‘levels’ may be imperfect in terms of classification. For 
example, technically the way oxygen is found in nature 
(within air for example) it is a molecule ( O2 ), but when 
broken apart and used in the body it may become (or act 
as) an individual atom. However, oxygen in the way par-
ticipants use it, one atom vs two, is not the focus here. 
In the instances that participants used it, oxygen’s overall 

behavior in biological systems better aligns with the atom 
level; therefore, we classified oxygen at the atom level 
(L1). Usage was not always explicit within the artifact and 
in those (few) cases we did not quantify the construct.

There are inconsistencies among scientific fields 
between how many bonded atoms comprise a molecule 
versus a macromolecule (i.e., a macromolecule is a large 
molecule). Biology courses spend time on this differen-
tiation, the typical macromolecules presented to biology 
students are: proteins, nucleic acids (DNA or RNA), car-
bohydrates and lipids, therefore we defined molecules of 
this size at the macromolecule level. Some of the mac-
romolecules participants identified were “proteins” and 
“DNA”. If portions of these macromolecules were refer-
enced (monomers), we classified them at the molecule 
level (“amino acid” or “nucleotide”). These words came 
from the individual conditions participants developed 
during instructional activities. These discrepancies would 
naturally occur in typical teacher grading and identifica-
tions of accurate use of these levels (by the students) was 
on par with typical grading expected by an AP level biol-
ogy teacher.

Other levels that were important to distinguish were 
organism (L9), population (L10) and species (L11). 
Organisms are individual living beings. Populations are 
groups of organisms, usually living in the same region, 
and are composed of multiple generations. Species are 
all of the organisms that have the ability to viably repro-
duce (which is determined by DNA similarity) and are 
assigned specific scientific names. All three of these 
definitions are blurry, even to those within the scientific 
community. For example, Canis lupus (wolf ) and Canis 
familiaris (dog) are different species due to the fact they 
normally would not be able to interbreed given where 
they typically reside, however they do have the ability to 
produce viable offspring and are sometimes referred to 
as Canis lupus familiaris. Biology texts claim that a spe-
cies is a group of interbreeding natural populations or 
one can say it is a reproductively cohesive assemblage of 
populations; making the emphasis on the genetic rela-
tionship as it is a property of populations not individu-
als nor based on morphological difference (Mayr 2000). 
The evolutionary process itself dictates that species may 
be units of evolution if they are made up of organisms 
related by descent. Depending on the definition species 
possess all the characteristics of individuals however 
there is a difference between organisms and species in 
that individuals contain a fixed genetic makeup whereas 
species do not (Hull 1976). We felt it important to make 
these distinctions based on our data particularly because 
they differed from textbook levels of organization. We 
classified biological levels based on the ways participants 
used them contextually.
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We counted and classified all of the biological words 
within each participant’s artifact that would distinctly 
represent an organizational level. If participants refer-
enced a specific protein such as “keratin” it was classified 
at the macromolecule level (L3) and if the participant ref-
erenced the word “protein” again in a different context it 
was counted as another word at the L3 level. It was pos-
sible for participants to identify multiple biological words 
at each biological level. If participants used the word 
“keratin” more than once however, this second instance 
was not counted again. If it was not clear that the partici-
pant identified the level (i.e., there was no context given 
or example was too vague) it was not counted. We quan-
tified the total number of “biological words identified” as 
well as the “biological levels attempted” which were iden-
tified for each participant from their digitally submitted 
artifact. This type of counting and quantification of the 
biological levels and biological level connections was a 
meta-analysis above what standard AP teachers would be 
responsible for; as educators typically grade on the indi-
vidual level and generally make note of issues at the class 
level.

We also identified “levels correctly identified” by 
excluding incorrect attempts in which the participant 
used the inappropriate context with the biological word. 
In theory each biological word represented a biologi-
cal level, however not all representations were accurate. 
For example, if a participant used the word “organism” 
but used it in the context of a species, we counted it as 
an incorrectly identified instance at the organismal level 
(L9). It is also important to note that not all partici-
pants turned in an artifact and not all participants com-
pleted all questions for the interventions. If students did 
not answer all questions within artifacts but there was 
enough meaningful information present within answered 
portions for scoring (greater than 80% of questions 
responded to) they were scored. This on average may 
have reduced the reported averages of biological levels 
and biological level connections. There were a total of 
39 participants who turned in artifacts with 80% of the 
questions completed (N = 39) therefore less artifacts were 
scored as compared to those who completed the inter-
ventions and respective pre- and post-tests from the pre-
vious study. The mistakes we identified were on par with 
what AP biology teachers would correct in their students’ 
work.

Relational analysis In order to address RQ1 more 
robustly, we wanted to determine how participants 
understood the relationship between the biological lev-
els. We addressed this by identifying how many explicit 
connections were made between the identified bio-
logical levels. For example, if participants claimed that 
“allele frequencies” (molecule level, L3) “influenced” 

“generations” (population level, L10) we counted it as a 
connection attempt with 7 levels in-between. We read 
through the artifacts until no new biological level con-
nections (BLC) emerged. We counted explicit con-
nections that participants made, the number of levels 
in-between and if the connections were “accurate”. These 
connections were prompted by various questions (not 
explicitly asked about). The nature of the biological level 
and biological level connection identification are on par 
with what AP biology teachers are capable of; but anal-
ysis of these items at the class or district level is not a 
standard practice.

We selected Level 9 as a pertinent distinction between 
“micro” and “macro” levels within this study. Level 9 
(organism level) was selected because students use vastly 
different methods to study levels below L9 as compared 
to levels above L9 (i.e., microscopes vs ecosystem mod-
els). Facets of biology that are smaller than L9 include cel-
lular biology or anatomy. Facets of biology that are larger 
than L9 include ecology or population dynamics. Fewer 
biological studies (and corresponding biology units 
within classrooms) tend to bridge these levels. Biological 
unity (micro) and diversity (macro) are frequently asso-
ciated with smaller or larger biological levels, although 
they may be seen at and between all scales. Both concepts 
of unity and diversity contribute to the understanding of 
biological evolution. We suspected that students require 
connections between this level to fully grasp evolution at 
all scales. The following table is what was used to identify 
the biological levels and connections, there were 14 rows 
one for each level (Table 4). A completed example with a 
student artifact is provided in Appendix A.

Analysis of computational complexity (RQ2)
We scored complexity for all of the computational com-
ponents (input, integration, output and feedback) as 
either “simple”, “developing” or “complex” based on 
participant description (as classified according to the 
LBECT-LP). Each intervention had at least one ques-
tion which explicitly required students to “identify each 
of the computational components within their activity”. 
Accuracy and complexity definitions that we used to 
code artifacts are outlined in Table 5. Participants scored 
no points for absence of the component or a 1 within the 
simple category, developing category or complex cate-
gory for each component (if it was mentioned).

For example, if a participant described input as “The 
FASTA sequence” the participant scored a 1 in the input 
category because this is how the researcher teacher 
described the input during the lesson. If participants 
explicitly identified their FASTA sequence accurately and 
identified what it represented biologically they scored a 1 
in the developing category for input (i.e., “The input was 
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the coded amino acid sequence of keratin from a com-
mon mouse which I found from the NCBI database”). If 
participants used an alternate database to find DNA or 
amino acid sequences on their own and described this as 
their input, they would have received a 1 in the complex 
category for input. If participants failed to mention input, 
they received zero points in the input category. We used 
this same process to categorize complexity for integra-
tion, output and feedback for each participant based on 
the parameters in Table 5.

Along with complexity, we also identified if participant 
models were present within their artifacts and how com-
plex the models were (under the parameters of integra-
tion within the LBECT-LP). Instructions indicated that 
participants should either supply links or screenshots of 
their working computational models which they devel-
oped during the interventions, however not all partici-
pants followed these directions. Simple models varied 
very little from the provided examples. Developing mod-
els showed participants manipulating their models based 
on computational instructions. Model level ranged from 
0 (absent) through simple or developing based on param-
eters in Table  5. According to the complex category 
from the learning progression, participants would need 
to display multiple unique and accurate models with lit-
tle teacher scaffolding to score in the complex category 
(none of which did so).

Most participants who mentioned the computational 
components scored within the simple or developing cat-
egories. After receiving one computational lesson, the 
learning progression predicts few or absent instances 
of complex computational components. Teachers and 
researchers can use the learning progression similar to 
the way we did to develop rubrics for specific lessons 
and select the applicable components to include based 
on classroom instructional activities and situate them 
for their level and range of students. Table  6 represents 
an example of the diagram used to code student artifacts 
for computational complexity and computational compo-
nents. Student example found in Appendix A.

Results
We initially present results for RQ1 as related to biologi-
cal levels of organization and biological level connec-
tions followed by a comparison of the interventions. We 
then present results for RQ2 and present levels of com-
putational complexity, followed by a comparison of the 
interventions. The results from this study are quantita-
tive, from the qualitative coding of artifacts only in an 
attempt to support and explain the knowledge differences 
from the biological evolution and computational thinking 
assessments as participant knowledge gains between the 

two computational interventions significantly differed 
(Christensen and Lombardi 2023).

Biological levels of organization (RQ1)
Research question 1 specifically seeks to answer how 
artifacts developed during computational interventions 
display different levels of biological organization. The 
average number of biological words per participant was 
5.75 (SD = 2.38) with a minimum of zero and maximum 
of 12. The average biological levels attempted per partici-
pant was 4.28 (SD = 1.64) with a minimum of 0 and maxi-
mum of 8 levels. The average of correctly identified levels 
per participant (excludes incorrectly identified biological 
levels) was 3.38 (SD = 1.53) with a maximum of 7 cor-
rectly identified levels (and minimum of 0).

We calculated the proportion of participants who 
attempted each level as well as the proportion of partici-
pants who accurately identified each level. We represent 
these proportions as percentages throughout the rest of 
the study for readability (“percent attempted” and “per-
cent correct”). Approximately 89.7% of participants iden-
tified L2 (molecule), 59.0% of participants identified L3 
(macromolecule) and 56.4% of participants identified L11 
(species). The levels attempted least frequently were L12 
(community; 10.3%), L6 (tissue; 10.3%), L8 (organ system; 
2.60%), and L14 (biosphere; 0%).

We also calculated the percent correct (for each biolog-
ical level) from the difference between the attempted per-
cent and the accurate percent which represents the mean 
for overall participant accuracy. For example, 30.8% of 
participants attempted L7, and 23.1% identified it accu-
rately resulting in 90.3% correct for L7. “Percent correct” 
reveals the biological levels participants had difficulty 
representing most often within their artifacts (and this 
is not necessarily representative of the levels that were 
used most often). Biological levels in which less than 
70% of participants identified correctly were L12 (com-
munity; 50.0%), L11 (species; 32.1%), L8 (organ system; 
0%) and L4 (organelle; 57.2%). Whereas students most 
often correctly identified L1 (atom; 100%), L2 (molecule; 
100%) and L7 (organ; 90.3%). Table  6 displays the per-
centage of participants who attempted each level (along 
with accompanying SDs), the percentage of participants 
who correctly attempted each level (and SDs) as well as 
the percentage correct for each level (representing overall 
participant accuracy). Table  7 also includes Kendall’s W 
rank which are values we used to determine ordinal asso-
ciations between the biological levels.

The resulting W value of 0.295 was low. This low W 
value indicates that there is little agreement in the fre-
quency of the biological levels used among the partici-
pants (Legendre 2010). In other words, there was a large 
variation of biological levels used among the participants 
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(this pool of participants was exposed to either interven-
tion 1 or 2). A chi-square test of independence was used 
to show significance of W with, χ2(12, N = 39) = 138, 
p < 0.001. Figure 1 displays the percentage of attempts of 
biological levels in decreasing biological size order along 
with the correctly identified percents at corresponding 
biological levels. This figure explicitly displays which lev-
els were identified most by participants and which they 
may have had trouble correctly identifying.

A Kendall’s tau-b (τb) correlation was used to identify 
the strength and associations for all biological levels 
within each artifact. We used this correlation because 
it is robust against outliers (as compared to Spearman 
correlations; Schober et  al. 2018) and the data were 
not normally distributed. Effect size (τb) determines 
the strength of the correlations or how strong the rela-
tionship is between the variables. Positive effect sizes 

indicate the biological levels that participants tended 
to use together, whereas negative effect sizes indicate 
levels that participants tended to avoid using together. 
Effect sizes less than 0.3 are considered “small”, effect 
sizes between 0.3 and 0.5 are considered “medium” 
and effect sizes greater than 0.5 are considered “large” 
(Schober et al. 2018). All of the Kendall’s tau-b correla-
tion effect size (τb) values can be found in Table 8.

These correlations partially answer RQ 1 through 
indicating which variables participants tended to 
identify within the same artifact (positive) or which 
variables participants tended to avoid using together 
(negative). These correlations are indicative solely of 
biological level identification, not to be confused with 
biological connections intentionally and explicitly made 
by participants (found in the relational analysis).

Table 6 Table representing coding scheme for computational complexity and computational components

Key biological words 
mentioned with term

Simple Developing Complex Notes

Computational Construct: 
Input, Integration, Output, 
Feedback

Words listed from artifact 
as associated with compu-
tational component

Construct mentioned Construct men-
tioned Properly 
with biological 
construct

Construct mentioned 
clearly, description pro-
vided and correct

Additional notes

Computational product: 
Model/
Output display (present)

Words listed from artifact 
within model

Construct mentioned Construct men-
tioned Properly 
with biological 
construct

Construct mentioned 
clearly, description pro-
vided and correct

Additional notes

Computational process: 
Description of process

Is a description of process 
present

Not present or incorrect Correct output Correct description 
provided

Additional notes

Table 7 Conceptual analysis: biological level totals including attempted (SD) percent, accurate percent (SD), overall percent correct 
and Kendall’s W Rank

*Kendall’s W = 0.295, χ2(12, N = 39) = 138, p < 0.001

Level Attempted (%) SD Accurate
(%)

SD (%) Correct Kendall’s 
W Rank*

14 0 – 0 – – –

13 25.6 4.42 20.5 4.09 80.7 6.53

12 10.3 3.07 5.10 2.23 50.0 5.53

11 56.4 5.02 17.9 3.98 32.1 8.53

10 48.7 5.06 38.5 4.93 77.6 8.03

9 43.6 5.02 35.9 4.86 81.8 7.69

8 2.60 1.60 0 - 0 5.03

7 30.8 4.68 28.2 4.56 90.3 6.86

6 10.3 3.07 7.70 2.70 80.0 5.53

5 30.8 4.68 23.1 4.27 74.2 6.86

4 14.0 3.51 7.70 2.70 57.2 5.36

3 59.0 04.98 51.3 5.06 86.4 8.69

2 89.7 3.07 89.7 3.07 100 10.7

1 12.8 3.39 12.8 3.39 100 5.69
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Relational analysis: biological level connections
We calculated the means and standard deviations of 
biological level connections (BLCs). There was an aver-
age of 2.56 “BLC attempts” per participant (SD = 1.25), 
while “the average levels between attempts” was 5.59 
(SD = 2.22). Because participants made multiple BLC 
attempts, the minimum number between levels “lev-
els between min” (M = 3.46, SD = 3.11) as well as the 
maximum number between levels “levels between 
max” (M = 7.87, SD = 2.28) was also identified for each 

participant. The means and standard deviations of the 
BLC constructs are displayed in Table 9. Accurate BLCs 
on average were smaller (in biological scale) than those 
for participants which attempted more levels in-between.

We further quantified and classified the types of 
BLCs that participants made into one of 3 groups from 
our qualitative analysis. It is important to note that we 
only counted instances of these three types of connec-
tions if they were accurate within the participant arti-
facts. The first type of connection were connections 

Fig. 1  Biological level percentages attempted by participants and percentage of correct instances, with bars showing ± 1 standard error. 
Biological levels represented 1 = atom, 2 = molecule, 3 = macromolecule, 4 = organelle, 5 = cell, 6 = tissue, 7 = organ, 8 = organ system, 9 = organism, 
10 = population, 11 = species, 12 = community, 13 = ecosystem, 14 = biosphere

Table 8 Kendall’s tau-b correlations for the biological levels within participant artifacts

Biological levels represented 1 = atom, 2 = molecule, 3 = macromolecule, 4 = organelle, 5 = cell, 6 = tissue, 7 = organ, 8 = organ system, 9 = organism, 10 = population, 
11 = species, 12 = community, 13 = ecosystem, 14 = biosphere (L14 was not identified by participants). (N = 39) All significance listed at *p ≤ 0.05

Level 1 2 3 4 5 6 7 8 9 10 11 12 13

1 –

2 0.130 –

3 0.320* − 0.110 –

4 − 0.111 − 0.220 0.241 –

5 − 0.890 − 0.141 0.217 0.016 –

6 0.376* 0.114 0.282 − 0.098 0.141 –

7 0.243 0.225 − 0.122 − 0.192 0.157 0.507* –

8 − 0.062 0.055 0.135 − 0.047 0.243 − 0.055 − 0.108 –

9 0.127 0.127 − 0.108 − 0.254 − 0.138 0.044 0.086 − 0.143 –

10 − 0.374 0.330* − 0.543* 0.089 − 0.094 − 0.160 0.239 − 0.156 0.0741 –

11 0.182 − 0.127 0.633* 0.254 0.250 0.297 − 0.086 0.143 − 0.166 − 0.385* –

12 0.123 0.114 0.282 − 0.098 − 0.042 − 0.114 − 0.225 0.480* 0.214 − 0.330* 0.127 –

13 − 0.255 0.199 − 0.585* − 0.170 − 0.010 − 0.199 0.117 − 0.095 0.431* 0.368 − 0.313 − 0.00511 –



Page 17 of 31Christensen and Lombardi  Evolution: Education and Outreach           (2024) 17:10  

which were made below L9 (connections between L1 
through L9, which we refer to as “micro levels connec-
tions”) such as a connection between macromolecule 
(L3) and cell (L5). Eleven participants (28.2%) identi-
fied 1 micro level connection, 10 participants (25.6%) 
identified 2 micro level connections, 3 participants 
(7.7%) identified 3 micro level connections and 15 
participants (38.5%) did not identify this type of con-
nection. Twenty-four students of the total thirty-nine 
(N = 39) correctly made at least 1 micro level connec-
tion with an average of 1.03 micro level connection per 
participant (M = 1.03, SD = 0.986).

The second type of connection were the connec-
tions above L9 (connections between L9 through L14, 
which we refer to as the “macro level connections”). 
An example of a macro level connection would be 
between populations (L10) and ecosystems (L12). Two 
students made 1 macro connection (5.1%), 1 student 
made 2 macro connections (2.6%) and 36 students 
(92.3%) did not make any macro connections. Three 
students correctly made at least one macro level con-
nection with an average of 0.10 micro level connection 
per participant (M = 0.10, SD = 0.384).

The third type of connection were the connections 
that were made directly through level 9 such as con-
nections between molecule (L2) and population (L10) 
(“micro through macro level connections”). Thirteen 
students (33.3%) made 1 micro through macro level 
connection, 2 students (5.1%) made 2 micro through 
macro connections and 24 students (61.5%) did not 
make any micro through macro level connections. 
Fifteen students made at least one accurate micro 
through macro level connection with an average of 
0.44 micro through macro level connections per par-
ticipant (M = 0.44, SD = 0.598).

Comparing computational interventions
Interventions resulted in different gains in compu-
tational and evolution knowledge (Christensen and 
Lombardi 2023) therefore we also compared the inter-
ventions separately. Computational intervention groups 
will be referred to as intervention groups 1 (Classes B 
and D; Table  1) and 2 (Classes A and C; Table  1) for 
simplicity. There were 17 participants who turned in 
artifacts within intervention group 1 (n = 17) and 22 
participants who turned in artifacts within interven-
tion group 2 (n = 22). Means, standard deviations, min-
imum, and maximum identifications for each of these 
constructs are listed in Table  10 for each intervention 
group. A Kruskal–Wallace test did not identify any sta-
tistical significance between the intervention groups 
(p ≥ 0.0761), it was used because the data did not meet 
the assumptions for normality (Martin et al. 1993).

Scope of biological levels: comparing computational 
intervention groups There were significant differences 
between computational intervention groups for the 
identification of 5 biological levels (L1, L3, L10, L11 
and L13) based on a Kruskal–Wallace test. Table  11 
depicts the percentage of participants who attempted 
each level (percentage attempted) and the percentage 
of participants who accurately represented each level 
(accurate percentage) with respective standard devia-
tions for each of the intervention groups. Significance 
was gauged at p ≤ 0.025 to account for familywise error.

There was a significant difference between interven-
tion groups for L3 with, H(1) = 34.2, p < 0.001 where 
participants within intervention group 2 identified 
L3 more frequently (100%) as compared to interven-
tion group 1 (6%). There was a significant difference 
between intervention groups for, L10 with, H(1) = 13.3, 
p < 0.001 where participants within intervention group 
1 identified L10 more frequently (82%) as compared 
to intervention group 2 (23%). There was a signifi-
cant difference between intervention groups for, L11 
with, H(1) = 17.9, p < 0.001 where participants within 

Table 9 Relational analysis: summary of total biological 
connections means and standard deviations

(N = 39) Values represent attempts per participant. Levels between refer to 
biological levels 1–14

BLC construct M SD

BLC attempts 2.56 1.25

Accurate connections 1.64 1.01

Levels between min 3.46 3.11

Levels between max 7.87 2.28

Average levels between attempt 5.59 2.22

Average between accurate attempts 3.98 3.08

Micro level connections (L1–L9) 1.03 0.986

Macro level connections(L9–L13) 0.10 0.384

Micro to macro connections(L1–L9) 0.44 0.598

Table 10 Means and standard deviations for biological words 
and levels identified between intervention

(NTotal = 39), ( nIntervention1 = 17) and ( nIntervention2 = 22), No statistical significance 
between interventions

Category Intervention M SD Min Max

Biological words identified 1 5.29 2.20 0 9

2 6.45 2.44 2 12

Biological levels attempted 1 3.65 1.73 0 6

2 4.77 1.41 2 8

Levels correctly identified 1 3.00 1.50 1 7

2 3.68 1.52 0 7
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intervention group 2 identified L11 more frequently 
(86%) as compared to participants within interven-
tion group 1 (18%). There was a significant difference 
between intervention groups for, L13 with, H(1) = 11.5, 
p < 0.001 where participants within intervention group 
1 identified L13 more frequently (53%) as compared 
to intervention 2 (5%). Significant differences between 
intervention groups 1 and 2 were also found at the 
same biological levels for correct attempts (p ≤ 0.038). 
A visual representation of the average percent identi-
fied of each biological level (differentiating interven-
tion) is depicted in Fig. 2.

Relational analysis: comparing computational inter-
vention groups We calculated the percent of correctly 
made BLC attempts between intervention groups. For 
intervention 1, 41.8% of participants correctly made 
BLCs and 27.0% of participants correctly made BLCs 
in intervention 2. A Kruskal–Wallace test was used 

to identify statistical significance between the groups 
because the data did not meet normality assumptions 
as displayed in Table 12.

The average BLC attempts were significantly different 
between intervention group with, H(1) = 10.3, p < 0.001. 
Participants significantly made more connection 
attempts in intervention 2 (M = 3.14, SD = 1.08) as com-
pared to intervention 1 (M = 1.82, SD = 1.07). The aver-
age minimum levels between attempts was significantly 
different between intervention groups with, H(1) = 8.69, 
p = 0.003. Participants within intervention group 1 
significantly had more levels between their minimum 
attempts (M = 5.24, SD = 3.41) as compared to partici-
pants within intervention 2 (M = 2.09, SD = 2.04). There 
was no significant difference between the interven-
tion groups for the average maximum biological levels 
between connections (p = 0.672).

Table 11 Percents and SD of biological levels comparing interventions

(NTotal = 39), ( nIntervention1 = 17) and ( nIntervention2 = 22)

*Significant at p ≤ 0.025

Biological level Intervention Attempted % SD Accurate
%

SD % Correct

14 1 0 – 0 – –

2 0 – 0 – –

13* 1 53 5.14 41 5.07 78

2 5 2.13 5 2.13 100

12 1 0 – 0 – –

2 18 3.95 9 2.94 50

11* 1 18 3.51 0 – 0

2 86 5.02 32 4.77 37

10* 1 82 3.93 76 4.37 93

2 23 4.29 9 2.94 39

9 1 47 5.14 35 4.93 74

2 41 5.03 36 4.92 88

8 1 0 – 0 – –

2 5 2.13 0 – 0

7 1 41 5.07 35 4.93 85

2 23 4.29 23 4.29 100

6 1 0 – 0 – –

2 18 3.95 14 3.51 78

5 1 24 4.37 18 3.93 75

2 36 4.92 27 4.56 75

4 1 0 – 0 – 0

2 14 3.51 8 2.70 57

3* 1 6 2.43 0 – 0

2 100 0 91 2.94 91

2 1 94 2.43 94 2.43 100

2 86 3.51 86 3.51 100

1* 1 0 – 0 – –

2 23 4.29 23 4.29 100
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The average number of individual biological levels 
between connections was significantly different between 
intervention groups, with H(1) = 19.23, p = 0.002. 

Participants in intervention 2 had made BLCs which were 
significantly closer together (M = 4.74, SD = 1.41) as com-
pared to intervention 1 (M = 6.69, SD = 2.53). In other 
words, participants in intervention group 1 had more 
individual biological levels between their BLC attempts 
on average. There was a significant difference for the 
amount of correct connections between interventions 
with, H(1) = 6.31, p = 0.012. Participants in intervention 
group 2 (M = 2.00, SD = 0.870) had significantly more 
correct BLCs as compared to participants in intervention 
group 1 (M = 1.18, SD = 1.01).

When considering the three types of connections, 
there was a significant difference for micro level connec-
tions (L1–L9) between intervention, with H(1) = 24.1, 
p = 0.01. Participants in intervention group 2 made 
more micro level connections (M = 1.68, SD = 0.780) as 
compared to participants within intervention group 1 
(M = 0.18, SD = 0.393). There was also a significant dif-
ference in the average number of participants making 
connections between the micro through macro levels 
between intervention groups with H(1) = 24.1, p = 0.01. 
Participants part of intervention 1 (M = 0.76, SD = 0.664) 
significantly made more connections through biologi-
cal L9 as compared to participants part of intervention 
group 2 (M = 0.18, SD = 0.395). There was no significant 
difference for connections at the macro level (p = 0.391) 
between the interventions groups. Significance was 
gauged at p ≤ 0.025 to account for familywise error. All 
of the BLC means and standard deviations between the 
intervention groups are listed in Table 11.

Fig. 2 Biological level attempt percentage between intervention 1 and 2, with bars showing ± 1 standard error. Biological levels represented 
1 = atom, 2 = molecule, 3 = macromolecule, 4 = organelle, 5 = cell, 6 = tissue, 7 = organ, 8 = organ system, 9 = organism, 10 = population, 11 = species, 
12 = community, 13 = ecosystem, 14 = biosphere

Table 12 Relational analysis comparing intervention groups: 
summary of total biological connections means and standard 
deviations

(NTotal = 39), ( nIntervention1 = 17) and ( nIntervention2 = 22)

*Significant at p ≤ 0.025 to account for familywise error

Category Intervention M SD

Connection Attempts* 1 1.82 1.07

2 3.14 1.08

Levels Between Connections Min* 1 5.24 3.41

2 2.09 2.04

Levels Between Connections Max 1 7.76 2.88

2 7.95 1.75

Levels Between Average Attempt* 1 6.69 2.53

2 4.74 1.51

Correct Connections* 1 1.18 1.01

2 2.00 0.870

Correct Average Between Connections 1 4.98 3.70

2 3.21 2.10

Correct Micro Level Connections* 1 0.180 0.393

2 1.68 0.780

Correct Macro Level Connections 1 0.180 0.529

2 0.050 0.213

Correct Micro Through Macro Level Con-
nections*

1 0.760 0.664

2 0.180 0.395
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Computational complexity (RQ2)
Table 13 displays the means and standard deviations for 
each of the computational complexity categories summed 
for all participants (participant scores within each cat-
egory ranges from 0–4). It also includes the percentage 
of participants who included models and the level of their 
Approximately 74% of participants included a model 
and model complexity average was between simple and 
developing (M = 1.23, SD = 0.842; 0 for model absent, 
1 for simple model present, and 2 for developing model 
present). On average participants’ complexity of the com-
putational components (input, integration, output and 
feedback) were not broken down further due to limited 
data (resulting in inconsequential results). Complexity of 
the separate computational components was outside the 
scope of this study.

It is important to note there were major differences in 
the content of these interventions. There was technically 
no concrete feedback within intervention 2 for partici-
pants to identify (although participants were prompted 
to hypothetically recognize it, none of them did). We ran 
a Kruskal–Wallis Test and results indicated there was a 
statistical difference between intervention groups for 
the computational developing category with H(1) = 4.89, 
p = 0.027. Participants in intervention 2 (M = 1.68, 
SD = 1.21) scored significantly higher in the develop-
ing category as compared participants in intervention 1 
(M = 0.82, SD = 1.02). There was also a significant differ-
ence in intervention groups for the model present cate-
gory with, H(1) = 10.1, p < 0.001. The means and standard 
deviations comparing interventions for computational 
complexity are also shown in Table 13.

Participant scores for each of the complexity catego-
ries ranged from 0 (all components absent) through to 
4 for each of the computational components (input, 

integration, output and feedback; i.e. participants had 
four opportunities to score within the simple category 
[0 to 4 comes from a combination of complexity scores 
of the computation components; input, integration, out-
put and feedback]). For example, a participant may have 
scored in the simple category for input, the developing 
category for integration and output, then failed to men-
tion feedback (Participant score: simple = 1, develop-
ing = 2, complex = 0).

Discussion
Conceptual and relational analysis of biological levels 
(RQ1)
The total biological levels identified by participants 
ranged from L1 to L13 with a majority of participants 
identifying levels at the micro (L2 and L3) scales and the 
macro scales (L10, L11 and L13); however, there was a 
lower frequency of identified levels in-between (middle 
scales). Atom, macromolecule and tissue tended to occur 
together, as did tissue and organ. The items that tended 
to occur together which were further apart in scale were 
organ system and community as did molecule and popu-
lation. Macromolecule tended to not occur with popula-
tion and ecosystem and population tended to not occur 
with species and community. These results support the 
idea that some scale levels tended to occur together 
more readily than others based on the intervention, even 
though students were not restricted to specific levels.

It is also important to note levels which participants 
most frequently identified incorrectly: L8, L11 and L12. 
For example, 56% of participants identified L11 but less 
than 40% of participants who recognized it identified it 
correctly. Participants hypothesized about organisms at 
L11, because usually organisms here were a component 
of phylogenetic trees (output, intervention 2), or they 
were depicted in the hypothetical populations (integra-
tion, intervention 1). Participants had difficulty iden-
tifying species (all organisms which have the ability to 
viably reproduce) and identifying that individual organ-
isms were part of populations (organisms within a local 
area). Increasing knowledge in these areas may be of 
importance for biology and biological evolution learning. 
Although individual organisms are important to distin-
guish within biological systems, participants frequently 
referred to them incorrectly within their artifacts. Bio-
logical levels 1, 2 and 3 had greater than 80% accuracy 
in correct participant identification. In most cases, 
based on artifacts participants used resources directly to 
define these levels (i.e., to search and find the function 
of a specific protein). The students that had accuracy in 
their artifacts due to searching, may not have learned the 
concepts as reflected by the knowledge gains within the 
previous quantitative study (Christensen and Lombardi 

Table 13 Means of computational complexity comparing 
interventions

Intervention 1 (n = 17), Intervention 2 (n = 22),

*indicates significance at p < 0.05 between interventions.

Category M SD Intervention M SD

Simple 0.920 1.22 1 1 1.41

2 0.86 1.08

Developing* 1.31 1.20 1 0.82 1.02

2 1.68 1.21

Complex 0.030 0.160 1 0 -

2 0.050 0.045

Model Level 1.23 0.842 1 1.47 0.514

2 1.05 0.999

Model % SD Intervention % SD

Model Present* 74.0 44.2 1 100 0

2 55 5.10
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2023). It is important to note that although differences 
between interventions as well as and evolutionary knowl-
edge gains are assumed from previous study our results 
do showcase the difference between intervention 1 and 2. 
Most of our results are not dependent on if the students 
actually learned evolution, but focus on the differences 
between the interventions (biological scales and content) 
through computational thinking. Student participants 
also spent the beginning of the year learning about these 
microscales, which may have contributed to accuracy 
at these levels. Curricula from previous years empha-
sizes microscale topics (i.e. chemistry) and the biologi-
cal scales of organization. Results indicate that additional 
testing or exploration around these specific biological 
scales are warranted by both researchers and educators.

Participant identification of Levels 1 and 3 (micro 
scales) as well as 10, 11 and 13 (macro scales) differed 
on average based on intervention group. There were sig-
nificantly more level identifications focused at levels 1, 3 
and 11 for intervention group 2 on average, and at levels 
10 and 13 for intervention group 1 on average. This sup-
ports the idea that intervention 1 focused on macro lev-
els while intervention 2 focused on micro levels, but that 
these levels were not mutually exclusive. Participants part 
of intervention 2 frequently identified L11 incorrectly. 
Although participants in intervention 1 identified levels 
10 and 13 more frequently, they did not identify L2 and 
L3, the smallest scales, as frequently. These differences 
may be due to the differences in nature of the interven-
tions, objectives and questions asked in the interven-
tions. These levels were the areas participants selected to 
identify based on the interventions.

Participants in intervention 1 had both more growth 
in computational thinking as compared to intervention 
2 and had significantly more growth in biological evolu-
tion knowledge (interpreted from the qualitative analysis; 
Christensen and Lombardi 2023). The relational analysis 
in the present study reveals, participants in intervention 
group 2 (the group with less knowledge gains from previ-
ous study) significantly made more connection attempts 
between biological levels, more correct connections, 
smaller numbers of biological levels between attempts, 
and had more micro level connections (between L1-L9). 
Participants part of intervention group 1 (the group with 
greater knowledge gains from previous study) made more 
connections through micro and macro levels (between 
L9) and larger BLCs on average. Between both interven-
tion groups, the BLCs that were smaller tended to be 
accurate more often. This presents evidence that making 
larger connections and connections between the micro 
and macro levels may be important to biological evolu-
tion learning when comparing these biological level dif-
ferences to quantitative knowledge gains of previous 

study. The connections with less levels in between may 
require mastery before attempting larger levels. Under-
standing the reason for student accuracy may also shed 
light, it may have been easier for students to make con-
nections at levels closer because this occurs more often 
in biology resources and texts (that participants may 
have used) as compared to levels which are not often 
connected. The resources participants were required to 
use were specific, in that they directly searched for the 
function of their proteins (which in many cases related 
directly to another microscale level) and they did not 
need to make any inferences about these relationships.

In biological systems the explanations of mechanisms 
of phenomena (such as biological evolution) apparent at 
one scale often lie at a different scale (Parker et al. 2012). 
Intervention 1 may have better contributed to students’ 
sense-making skills and perceptual fluency (Rau 2018) 
allowing students to holistically engage with the topic. 
It may also support the idea that micro scale levels and 
connections are not necessarily influential on biological 
evolution learning when considering previous results. 
For example, a microbiologist studying protein sequenc-
ing and seeing the outcomes at the level of the cell or 
organism only may be less clear on biological evolution 
as compared to a microbiologist who also understands 
these implications above the organism level. This is evi-
denced by many universities that have courses, majors 
and even departments broken up into the microbiology 
and or cell biology departments that are distinguishable 
from their ecology and evolution counterparts.

This problem of student inability to make micro to 
macro scale connections is sometimes referred to as 
“slippage between levels” (or disconnects between lev-
els) and is also associated with fragmented and compart-
mentalized knowledge (Brown and Schwartz 2009). This 
problem has not received much attention in the litera-
ture on evolution education (Jördens et al. 2016). Fluid-
ity between these levels allows students to reason across 
them and contribute to biological literacy (Brown and 
Schwartz 2009). Student understanding of these levels 
and BLCs is important in evolution learning but may also 
provide educators understanding of where their students 
struggle with biology concepts. Curricular materials and 
assessments often focus on concepts through objec-
tives and not explicitly at the levels or connections being 
pursued.

This finding is particularly interesting because it 
emphasizes one of the 5 chief strategies that encour-
age thinking across levels in biology (Parker et al. 2012). 
Thinking across levels in biology consists of: (1) distin-
guishing different levels of organization, (2) interrelating 
concepts at the same level of organization (horizontal 
coherence) (3) interrelating concepts at different levels 
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of organization (vertical coherence), (4) thinking back 
and forth between levels (yo-yo thinking) and (5) meta-
reflection about the question which levels have been 
transcended (Jördens et  al. 2016). Our finding presents 
the importance of point 3 (vertical coherence) and 4 (yo-
yo thinking) in biological evolution learning, which may 
have been supported by computational thinking within 
intervention 1 based on previous study as explored here. 
More emergent phenomena occur for students as their 
BLC distances increase, and these phenomena may have 
become more apparent for participants in intervention 
1. Previous studies have considered the importance of 
macro and micro level connections (Jördens et al. 2016); 
however, there is a gap in research explicitly identifying 
multiple levels within the micro and macro level ranges 
and connection distances in the ways that we have; which 
can be applied to other learning scenarios. Computa-
tional thinking can emphasize learning across specific 
scales, including those which tend to be problematic or 
pose misconceptions (Chi et al. 2012).

We suspected that the interventions may have empha-
sized different biological levels of organization or 
prompted different degrees of computational complex-
ity. Our results also support our hypothesis that there 
would be a discernible emergent relationship between 
participant understanding of biological levels of organi-
zation in response to computational intervention expo-
sure. The difference in knowledge gains and in essence 
effectiveness (Christensen and Lombardi 2023) may have 
a relationship with the participants’ use of biological lev-
els of organization, biological level connections and or 
computational complexity as these were the areas which 
significantly differed between the interventions. It also 
supports that the group with greater knowledge gains 
(intervention group 1) more frequently identified scales 
at the macro level. Participants within intervention group 
2 identified more micro scale levels and showed a greater 
ability to identify them accurately indicating that accu-
racy within artifacts at the micro levels in this case was 
not a contributor toward knowledge gains gleaned from 
previous study.

There were discernible differences between interven-
tion 1 and intervention 2 considering how many BLC 
attempts were made, the numbers of levels between 
attempts and the type of attempts that were made. This 
also supports our hypothesis regarding the relationship 
between unique participant understanding of biological 
levels of organization in response to the different com-
putational interventions. These differences may have 
contributed to the significant knowledge gains present 
for intervention group 1 (Christensen and Lombardi 
2023). Participants part of intervention group 2 (the less 
effective intervention) made more connection attempts 

overall and more connection attempts at the micro 
scales. Participants in intervention 1 (the effective inter-
vention) made more successful biological connections 
through level 9 (organism level) and their BLCs signifi-
cantly spanned larger ranges. Because intervention group 
1 made more significant knowledge gains based on previ-
ous study, our exploration provides support that connec-
tion attempts through level 9, macro level identifications, 
and larger BLCs on average (encompassing more scales) 
may have an impact on student learning biological evo-
lution whereas the number of connection attempts for 
example did not. Larger BLCs might indicate that partici-
pants are making relationships more holistically (encom-
passing both unity and diversity concepts; Jördens et al. 
2016). Students making successful connections through 
level 9 are showing evidence of combining micro level 
concepts with macro level concepts. These connections 
may have been better supported through various compu-
tational aspects of intervention 1.

Many factors may have contributed to this finding: 
including use of scales students are comfortable with, 
scales that were most often prompted by biological evo-
lution or the nature of the interventions themselves. 
Regardless of the intervention differences, the student’s 
understanding and use of the scales alone may provide 
insight as to which scales are most difficult for students 
or require emphasis before or while learning biological 
evolution. Artifacts were not collected during the tradi-
tional lessons, therefore there was no control group and 
these results are applicable to the two versions of the 
computational thinking interventions.

Computational complexity analysis (RQ2)
Most participants exhibited simple and developing com-
plexity among the computational components mentioned 
in their artifacts. It is important to note that participants 
explicitly wrote their answers identifying the compu-
tational components and answers were scored based 
on accuracy. On average more participants exhibited 
scores in the developing category (M = 1.31, SD = 1.20) 
as compared to the simple category (M = 0.93, SD = 1.22) 
and the difference was significant between intervention 
groups. For most of the computational components, a 
simple score was given if the component was mentioned 
at all, while a moderate score was given if the component 
was given alongside a biological context (See Table 5).

When comparing intervention groups 1 and 2, par-
ticipants in intervention 2 significantly had more par-
ticipants score in the developing category (M = 1.68, 
SD = 1.21) as compared to the simple category (M = 0.82, 
SD = 1.02). Significantly more participants within inter-
vention group 1 (100%) had their models present within 
their artifacts as compared to intervention group 2 (55%). 
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These differences may be attributed to the specific activi-
ties and components emphasized within the interven-
tions coupled with participant’s ability to learn from 
them. Quantitative results (Christensen and Lombardi 
2023) indicate participants in intervention 1 produced 
greater knowledge growth in both computational and 
evolution knowledge constructs, however qualitative 
results regarding computational complexity in the cur-
rent study indicate model presence was the only con-
struct that significantly measured higher for this group, 
indicating that attempts at computation contribute to 
understanding. It was interesting to note that overall 
computational knowledge growth was not considerable 
(only at time 2), and this could be because it was the par-
ticipants first time interacting with computational con-
structs. There was a shared aspect of the computational 
lessons and as well as unique computational aspects 
between the interventions. Both intervention groups 
were exposed to computational learning, and proof of 
computation as displayed significantly more often for 
intervention group 1, may be responsible for the knowl-
edge gains of the group. The computational context was 
also not considered here, as the computational context 
provided for intervention 1 was not a preconstructed tool 
with an interface (as this was the case in intervention 2). 
To describe an analogy, a preconstructed tool in order to 
‘save your work’ may be clicking the floppy disk icon (and 
potentially being redirected) when typing up a document, 
while an alternative more complex way to complete this 
task (requiring higher computational complexity) would 
be selecting save as, and selecting where and how to save 
the file.

There were discernible differences between the inter-
ventions when considering computational complexity 
within participant artifacts (computational products). 
Interestingly, significantly more participants in interven-
tion 2 (less successful intervention) scored in the devel-
oping category (as compared to intervention group 1). 
Significantly more participants turned in representations 
of their computational models in intervention group 
1, which may indicate that computational interactions 
themselves (and the specific computational context\) may 
contribute to overall gains as compared to the computa-
tional complexity alone, supporting the idea that compu-
tational thinking exposure and type is beneficial within 
itself.

Based on LBECT-LP (Christensen and Lombardi 2020) 
the computational products (the artifacts in this case) 
are a representation of the combination of the instruc-
tional context and computational process experienced 
by participants. We suspected that increased computa-
tional complexity (exhibited by artifacts of intervention 
group 2) would have a relationship with computational 

knowledge gains or evolution knowledge gains, how-
ever this is not the case. The results of the study did not 
support this relationship between increased complexity 
and knowledge gains. It is important to note that par-
ticipant artifacts (computational product) were assessed 
to discern computational complexity. The LP indicates 
that computational product, computational process and 
instructional context should all be considered when 
assessing complexity (Berland and McNeill 2010). For the 
purposes of the study we made the assumption that com-
putational products (artifacts) would accurately reflect a 
combination of complexity of the computational process 
and instructional context.

When considering the instructional context, the first 
computational intervention itself had more computa-
tional complexity as compared to the second interven-
tion (google sheets, vs. BLAST program) however the 
integration within intervention 2 was essentially invisible 
to the student participants due to a more complicated 
interface (i.e. save icon versus file save setup). A follow 
up to the study might compare a group of student par-
ticipants who had not been exposed to computational 
learning interventions at all or develop artifact ques-
tions to provide pre-intervention to use as a baseline 
comparison to discern student computational complex-
ity, though it is reasonable to hypothesize that students 
had very little understanding of computation to start. 
The LBECT-LP is designed to expose students to compu-
tation and evolution over a much longer period of time 
than the study allowed and the computational context 
as it related to complexity was not considered. In future 
studies, the instructional context, computational process 
and computational product may need to be considered 
simultaneously to truly assess success (and complexity) 
of computational instruction. These findings partially 
support the hypothesis that there would be a discern-
ible relationship between student level of complexity in 
terms of understanding of computational thinking (sim-
ple, developing or complex) in response to the different 
computational interventions, although the complexity 
differences did not align with our predictions based on 
differences in content knowledge.

Limitations
 One limitation relates to the degree to which the find-
ings are generalizable based on the subset of participants. 
The study sample is representative of advanced biology 
students in a predominantly white middle class popula-
tion. Participants were randomly assigned at the class 
level and the number within each class differed although 
results did not indicate significant classroom or teacher 
effects allowing us to discern randomness. There was no 
true control group of participants (who did not experience 
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computation in order to compare their tests or artifacts 
with) which might be a consideration for future studies. 
Artifacts were collected after the computational inter-
ventions, and not the traditional lessons due to inequality 
between the artifacts and attempts to reduce the burden 
on the teachers to try and equate the assignments. The 
LBECT-LP provides some structure for use with additional 
age, content and ability levels. The first intervention may 
have targeted unique aspects of evolution or computa-
tional thinking as compared to intervention 2. Addressing 
and assessing the instructional context and computational 
process along with the computational product (artifact) 
would provide more insight on computational complexity. 
These items may include consideration of the lesson struc-
ture itself and or social interactions during lessons. Cer-
tain students are more versed in coding than others and 
novelty of the researcher teacher may have influenced the 
results. The interventions prompted student use of inter-
face friendly computational tools, partially due to the fact 
that the learning progression is not used in the district, 
prompting students to start at the lowest levels. Computa-
tion at a higher complexity would have required additional 
learning time for students. Ideally, in a more computa-
tionally complex version of this lesson (when presented at 
an appropriate ability level), students could write simple 
programs and be provided less scaffolding. Researchers 
versed in biology education and computational thinking 
assisted educators in this study. The researcher teacher 
also designed the study to reduce burden on the teachers, 
provide relatively equal opportunities to all participants 
and maintain the integrity of the AP curriculum. Extend-
ing the research or teaching implications may require less 
intricate computation, objectives that target specific levels 
or computation or pre-made lessons (with infused compu-
tational thinking) to support educators.

It is also important to note the open-ended nature of the 
study, as students could use an infinite number of biologi-
cal words to discern a biological level. Although the inter-
ventions were both teaching content related to biological 
evolution, there were differences between the resulting 
artifacts. This novel type of relational coding analysis may 
be beneficial to complete at the conclusion of other units in 
order to accurately assess student knowledge of biological 
evolution, and may be applied to other biological education 
studies. Student computational thinking may have encour-
aged the use and flow of multiple biological levels of organ-
ization; as this was the tool used for both interventions. The 
design of the study was based on infusing as much testing 
and artifact collection as possible while minimizing stress 
on teachers and maintaining integrity of the curriculum 
that was already in place. Although computational think-
ing constructs are used within the curriculum, the use of 
the computation in the interventions was at a higher level 

due to the exclusiveness, the definitions presented by the 
LBECT-LP and explicit tool use. The sample size was small, 
and computational tools were limited (and simple) particu-
larly due to lack of prior computational knowledge. The use 
of free online resources (such as Google sheets and BLAST) 
are available and accessible to teachers and districts, but 
often require training and exposure in order for educators 
to feel comfortable with them. This study assumes that 
evolution knowledge gains were made in a previous study. 
Our purpose was to ask additional research questions that 
would provide a deeper dive into the previously published 
quantitative results, as this may be a limitation but also an 
item to consider for repeatability.

Implications for teaching and research
The implications for teaching and research can be both 
applied and theoretical. In a practical sense the complexity 
of computational thinking presented and expected of stu-
dents was relatively simple in this study. Although it is feasi-
ble for AP biology students to write their own (very simple) 
code in various programs (i.e. R and Python) in a more com-
putationally complex task, this is more likely achieved with 
high levels of scaffolding that would be difficult to impose 
on teachers. This may be taxing for some schools, as most 
integration of computational thinking tends to be, which 
lends towards questions of equity, access, teacher prepa-
ration and scaffolding through grade levels (as addressed 
in the LP). Multiple simple computational tasks scattered 
throughout biological learning during a school year may 
have positive impacts on student learning, particularly for 
topics that span biological levels such as biological evolu-
tion. In a theoretical sense, we make assumptions about the 
relationship between computational thinking and biologi-
cal evolution learning as supported by the results of Chris-
tensen and Lombardi (2023). The current study supported 
the idea that multiple biological levels and BLCs emerged 
through the use of computational thinking differently 
between the two interventions. Our two computational 
interventions differed in learning gains (as was the focus on 
in previous studies), either micro (unity) or macro (diversity) 
scales and again lent to identification of differences biologi-
cal levels addressed by students, biological level connections 
made, and size and types of the BLCs. Student development 
of models without an interface (intervention 1) was associ-
ated with knowledge gains and may provide insight on the 
fact that computation itself may provide benefit, even if it is 
simple as compared to not engaging with computation at all. 
Understanding student identification of biological levels and 
relationship building among them is a novel yet important 
idea for both researchers and teachers which can be applied 
to other methods of learning.

AP biology students are unique in that they tend to be 
high achieving students at the high school level who are 
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expected to learn (and are tested on) a standardized col-
lege level biology curriculum. Student navigation and 
interaction with a spreadsheet (no interface) versus a user-
friendly website (with interface) may have contributed to 
the success of intervention 1 and the differences in the use 
of biological levels and biological level connections. Com-
putational complexity may have been achieved more often 
by students in intervention 2 because they were able to 
identify and use biological words to describe their com-
putation and the integration portion was essentially writ-
ten for them within the interface. Students in intervention 
2 did not start with a modeled template which may be 
a reason for the absence of the student models in inter-
vention 2. Interestingly, an accurate description of more 
complex computation was not as valuable as the evidence 
of the models itself (even if it was inaccurate and or less 
complex). Lending to considering additional factors (such 
as computational context) when considering artifacts and 
or testing around biological evolution or computational 
thinking for both research and teaching purposes.

The interventions were imperfect in providing this scaf-
folding both from a biological evolution and computa-
tional thinking perspective. We claim that computational 
learning is beneficial for biological evolution learning due 
to its inherent ability to span levels and facilitate emer-
gence. We identified which and if these levels were pre-
sent as well as the student connections that differed based 
on computational intervention. Often in certain types 
of qualitative studies, ideas and results emerge from the 
data. The best practices for helping students to think com-
putationally are still unknown. This becomes especially 
important when considering differentiation to account 
for various ability levels found within classrooms. Such 
research would include testing other lessons (i.e., inter-
ventions), instructional units, and modified (or new) 
assessments based on the LBECT-LP. Researchers may 
better understand impacts on classroom practice, specific 
NOS processes, and overall effectiveness. The results from 
new interventions or assessments may be compared to 
groups of students who have not received computational 
interventions to better identify if and how computa-
tional thinking contributes to learning specific constructs 
around evolution. Additional groups of students (ages, 
demographics or ability levels) should also be considered.

Further exploration of the specific biological levels or 
computational components is necessary, especially since 
there were distinct differences between the interventions 
within the study. For example, specific participant answers 
of the qualitative study may be paired with specific quan-
titative biological levels, computational complexities, 
computational components, and or NGSS standards, not 
just evolution or computational knowledge constructs 
as a whole. The evolution knowledge assessment was 

developed specifically to assess all levels and the com-
putational thinking assessment was designed specifically 
with each question tailored to input, integration, output 
and feedback. Pairing these specific questions with bio-
logical levels, connections and complexity would shed 
light on more specific benefits of computational interven-
tions around biological evolution. Our results indicated 
that biological scales (especially micro through macro 
scale connections, or identification of larger levels) may 
be important for biological evolution learning because 
of the significant difference in evolution knowledge and 
biological organizational level scale use between the inter-
ventions associated with greater knowledge gain from 
previous studies. Further exploration of specific biologi-
cal levels (and BLCs) and their interaction (and emphasis) 
with computation (among other methods) lends for future 
research. Analogous to our assessment of biological levels, 
another scale to consider may be time (just as evolution 
occurs across biological scales, it also occurs over time). 
Improved assessments or additional interventions may be 
used to further explore the relationship between biologi-
cal evolution learning and computation.

Conclusion
Our study serves as a deep dive into exploring knowl-
edge gains from the use of CT based on the idea that CT 
encourages students to interact with various levels of 
biological organization. The interventions both involved 
teaching biological evolution through computational 
means; however, they involved distinctly different activi-
ties that may have emphasized different biological aspects 
of biological knowledge and complexity of computational 
processes. It is reasonable to hypothesize that these levels, 
connections and computational complexity differences 
may have some relationship with evolution or computa-
tional knowledge based on previous quantitative results 
(Christensen and Lombardi 2023). The purpose of this 
study was to explore the differences in knowledge gains 
(between the interventions) by quantifying our qualitative 
analysis through participant artifacts around (1) biological 
levels of organizations and biological level connections as 
well as (2) computational complexity. Participants identi-
fied a range of biological levels with the most frequency 
occurring at lower biological scales (L2 and L3) and higher 
scales (L10, L11 and L13) with less incidence of scales in-
between as prompted by both computational based inter-
ventions. When considering the 5 chief strategies that 
encourage thinking across levels in biology (Parker et al. 
2012) this presents a deficiency of the first strategy, iden-
tifying the levels of organization. Sometimes micro and 
macro scales are presented alongside certain concepts and 
methods within biology classrooms, however some scales 
(the scales in-between) may not be presented as often 



Page 26 of 31Christensen and Lombardi  Evolution: Education and Outreach           (2024) 17:10 

with evolution. Certain levels were easier for participants 
to identify correctly (L1 and L2) whereas other levels (L11, 
L10 and L8) presented more difficulty. These findings pre-
sent that certain levels and connections may need more 
assessment and attention within biology classrooms in 
learning biological evolution. Participants in intervention 
1 identified L11 and 13 more frequently where-as partici-
pants in intervention 2 more frequently identified L2, L3 
and L10. These differences were likely due to the nature of 
the content within the interventions.

The BLC count also differed significantly between the 
interventions. Although biological evolution growth 
for participants in intervention 2 was not significant, 
on average these participants made more connec-
tion attempts, had smaller numbers of biological levels 
between attempts, and had more micro level attempts 
(between L1-L9). Participants a part of intervention 1 
made more connections through micro and macro lev-
els (between L9) which may pose greater implications 
for biological evolution knowledge growth as indicated 
from the quantitative analysis. Facilitation of learning 
around these specific biological level connections can 
be achieved through computation and particularly what 
items are most meaningful.

On average more participants generated develop-
ing level computation as compared to simple computa-
tion, however this was only based on the computational 
product and did not include scoring of the computa-
tional context or computational process. When compar-
ing interventions, significantly more participants part of 
intervention 2 scored in the developing category, yet less 
participants submitted their computational model which 
may have indicated a higher difficulty or complexity. For 
most participants it was the first time that participants 
had interacted with computational components, espe-
cially in the way they were defined in the LP. Developing 
strategies to get students towards complex computation, 
especially coupled with specific biological evolution con-
tent objectives is an important topic for further research.

Overall, the results support the use of the LBECT-
LP because it may assist in student exploration of dif-
ferent biological scales as a contemporary method to 
get students thinking about the connections between 
biological levels of organization in learning biological 
evolution. More importantly this type of thinking sup-
ported by our framework can span across other topics 
and disciplines. It is unknown how computational pro-
cesses will help students to better understand evolution 
and in turn how this might strengthen their knowledge 
within the domain of biology as a whole. Using com-
putation should strengthen student knowledge and 
NOS processes, but it is unclear in what ways. Con-
tinued quantitative analysis may identify if knowledge 

gains are being made, while supplementary qualitative 
analysis can provide domain specific insight to direct 
future research in these areas. Students may become 
more comfortable developing new computational tools 
or applying these skills to other disciplines. It is also 
unclear how computational processes explored through 
this type of learning progression may relate to overall 
student achievement, collaborative learning outcomes, 
or its application to other scientific disciplines.

Proper scaffolding would allow students to make connec-
tions across various levels of biological organization, our 
research may aid in resolution of scaffolding for specific 
students. With the assistance of the appropriate experts, 
we suspect this learning progression can be modified and 
applied to other domain areas. These types of scales exist 
across disciplines to emphasize biological evolution. It is 
known that learning across scales is central in science, tech-
nology, engineering and mathematical learning. Relational 
reasoning (basic cognitive mechanism involved in the for-
mation of conceptual categories and encompasses the abil-
ity to detect similarities and differences in patterns among 
objects, concepts and situations) has been presented to 
alleviate misunderstandings across biological scales how-
ever very few specific learning activities have been devel-
oped on the topic, and none associated with biological 
evolution knowledge (Resnick et al. 2017). The act of com-
putational thinking may encourage relational reasoning 
and activate unique cognitive processes that may be ben-
eficial to learning biological evolution. These ideas expand 
to include subfields of the major sciences such as biochem-
istry, physiology, marine science, or environmental science 
(Christensen 2022). Therefore, developing learning pro-
gressions incorporating computational thinking with fun-
damental concepts within other scientific fields (in addition 
to biology) should be considered for future study to expand 
evolution knowledge and application. Additional lessons 
which infuse biological evolution and computation may be 
an avenue to further explore in a practical sense (Gallagher 
et  al. 2011). Computational thinking continues to expand 
within science curricula, and educators need assistance in 
developing feasible lessons for their students to more effec-
tively blend computational thinking with concepts such as 
biological evolution.

Future study may also lend to the discussion of why com-
putational thinking might be effective for learning across 
scales (i.e. biological levels). These ideas relate to the con-
cept that is presented in many biology texts to describe 
emergent properties and interestingly also applied to many 
other domains: The whole is more than the sum of its parts 
(Campbell et  al. 2000) as can be modeled through com-
putational thinking. Computational thinking may provide 
students the tools and thought processes which allow them 
to account for all of the moving parts (i.e. biological levels) 
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alongside the big picture (i.e. biological evolution across 
scales). Understanding of these mechanisms and benefits 
of these thought processes are essential for advancement of 
biology within a technological world.

Appendix A
Example of coding analysis

See Tables 14 and 15.

Table 14 Biological level coding from artifact below

Biological words 

student uses To 

identify 

biological level(s)

(instances)

Which 

biological levels 

(1-14)

How many 

properly 

identified 

level(s), 

supporting 

explanation

present 

How many 

connection

attempts made 

between 

levels? 

How many 

levels 

between 

these 

attempts? 

Was correct 

connection

made between 

levels? (at 

least once)

Other 

Notes 

14 Biosphere

13 Ecosystem Environment 13 1, no 12 no

12 Community

11 Species

10 Populations Populations 10 1, yes 9 yes

9 Organism Bird, offspring 

(2)

9 1, no 8 yes

8 Organ system

7 Organ Beak 7 1, no 6 yes

6 Tissue

5 Cells Gametes, Zygotes 

(2)

4 no

4 Organelle

3 Macromolecule

2 Molecules Allele, Allele A, 

Allele B (3)

2 3, yes

1 Atoms

totals 5 levels used 2-13 5 total, 2

explanations

2-5, 2-10, 2-7, 

2-9, 2-13 (5)

4,6, 8, 9, 12 2-5 no, 2-10

yes, 2-7 yes, 2-

9 yes, 2-13 no
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Participant Artifact Coding
Student typed in red.

Identified areas to be analyzed and quantified in table above

Computational components

Biological Levels

Connections

overlap

Participant Artifact
*Student typed in red
H-W Activity
What do you need to turn in?
(Each section only needs to be a few sentences).

Table 15 Computational complexity coding from artifact below

Key Biological Words 
Mentioned with term

Simple Developing Complex Notes

Input Allele x

Output Allele x

Integration – x

Feedback allele x

Model/Output Display Present?
Yes

x

Description of process Vague or absent No mathematical construct, 
incorrect use description 
of model

Includes proper mathematical construct, 
provides proper other uses of model/con-
cepts, brings up new ideas
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