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Abstract Technology seems to follow a different type
of evolutionary dynamic when compared with bio-
logical systems. As pointed out by Francois Jacob,
evolution takes place by means of extensive tinker-
ing and does not foresee the future. Engineers will
typically have a well-defined purpose and are not—in
principle—constrained by the available technological
constraints. However, the truth is that technological
change shares much more than we might suspect with
the patterns and processes displayed by evolution. Us-
ing case studies from both protein maps and large-scale
software networks, we show that several key traits, such
as scale-free structure and modularity, are shared by
both man-made and biological evolving systems. Sur-
prisingly, we find convergent evolution in several key
features of software systems, indicating that strong con-
straints are at work. Such constraints force engineers
to extensively reuse already constructed parts, thus de
facto tinkering with their designs in a way similar to the
duplication–diversification mechanism driving genome
growth. The evolution of these systems reveals that
well-defined patterns are obtained “for free.” Some
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of them can be properly interpreted as technological
spandrels.
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Introduction

At the end of his book On the Origin of Species, Charles
Darwin used the following famous quote regarding the
complexity of life:

There is grandeur in this view of life, with its
several powers, having been originally breathed
into a few forms or into one; and that, whilst this
planet has gone cycling on according to the fixed
law of gravity, from so simple a beginning endless
forms most beautiful and most wonderful have
been, and are being, formed.

Darwin’s fascination for life forms and how they
evolve remains as fresh as when Origin was written
(Barton et al. 2008). The diversity of designs that we can
find in the natural world is indeed astonishing. How life
has been able to cope with environmental challenges
to find the appropriate solutions (on multiple scales) is
one of the most interesting problems faced by current
evolutionary theory. Such diversity and its evolutionary
patterns are also present within the context of technol-
ogy (Basalla 1988; Arthur 2010). Technological change
implies the emergence of new forms of solving given
problems, very often by means of improvements in
previous designs and sometimes by combining available
solutions in novel ways. As it occurs with the evolution
of species, new technologies emerge and explode in
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diversity while others become obsolete and go extinct.
Not surprisingly, the similarities between technological
and biological evolution have generated a considerable
literature and inspired evolutionary biologists to look
into their parallels (Eldredge 2001).

Darwin’s words refer mostly to the external patterns
displayed by individuals within species. Such complex-
ity and diversity only increased as scientists were able
to look deep inside organisms and cells. Here again
endless forms (and molecules) most beautiful were
(and are being) found. But together with the view of
nature as a diverse array of forms, there is the no
less outstanding discreteness and order displayed by
nature. As noted by the late Pere Alberch, “we are
so bewildered by the diversity of nature that we often
forget that the world could have been of a very different
shape” (Alberch 1989). Such discreteness is tied to the
problem of evolutionary convergence. Many examples
illustrate the observation that some particular solutions
(from eyes to e-sociality) seem to be re-discovered once
and once again by evolution (Conway Morris 2003).
Additionally, one view within complex systems science
suggests that there are deep constraints to what is pos-
sible and thus that the discreteness of living is shaped
(to some extent) by fundamental laws of mathematical
nature. Some of these constraints are related to the
structure of fitness landscapes (Kauffman 1993; Niklas
1994; McGhee 1999).

What general regularities can be found? Below the
surface of diversity, there is one seemingly universal
property of living structures. From the protein organi-
zation of functional/structural domains at the subcel-
lular level to the organization of body plans, we ob-
serve modular patterns on different scales. Modularity
is by far one of the most important and characteristic
features of complex adaptive systems, and it pervades
biological complexity (Raff 1996; Hartwell et al. 1999;
Wagner et al. 2007; Kepes 2007; Pereira-Leal et al.
2006). Many cell functions are carried out by subsets of
units that define functionally meaningful entities. Well-
known examples include developmental modules (von
Dassow et al. 2000; Solé et al. 2001; Solé et al. 2002a, b).
Modularity allows efficient improvement of the adap-
tive potential of different functions with a small amount
of interference from others (Wagner 1995; Calabretta
et al. 2000; Lipson et al. 2002). The standard view of
the evolution of modular architectures suggests two
possible scenarios: either parcellation or integration.
The first involves the differential elimination of cross-
interactions involving different parts of the system. This
is the strategy operating in eukaryotic organization.
Membrane parcellation permits the existence of enzy-
matic processes that cannot occur at the same place,

as well as the generation of electrochemical potentials
by selective exchange of ions across membranes. But
it also plays key roles at higher scales, such as in brain
organization (Sporns 2010) or even ecosystem structure
(Olesen et al. 2007). It thus provides a powerful theo-
retical framework to address the problem of evolution-
ary hierarchies (Eldredge 1985).

The second instead proposes an alternative sce-
nario where an initial system of interacting components
formed by independent parts ends up displaying mod-
ularity because differential integration of those inde-
pendent characters takes place. This scenario seems
appropriate in describing the evolution of neural net-
works (Striedter 2005). In this case, optimization is
a major driving force. Wiring and cost minimiza-
tion, first proposed by Ramón y Cajal more than
100 years ago (Ramón y Cajal 1899), is clearly at work
(Chen et al. 2006; Perez-Escudero and de Polavieja
2007). Similarly, the evolution of branching systems
(West et al. 1997; Brown and West 2000; see also
Durand and Weaire 2004; Durand 2006) associated
with transport of fluids and gases in living organisms
has been subject to optimization. However, as we will
illustrate in this work, optimization is not necessar-
ily the driving force shaping the topology of complex
networks.

The origins of modularity in cellular systems can
be explored by using complex networks (Albert et al.
2000; Albert and Barabasi 2002; Boccaletti et al.
2006; Bornholdt and Schuster 2003; Dorogovtsev and
Mendes 2003). Within cells, interactions between
metabolites, proteins, or genes define a web of mole-
cular relations which have well-defined organization.
Such patterns can be fully characterized and pose
strong constraints on the predictions made by any
theoretical model trying to explain the architecture of
cellular maps. In this context, recent theoretical stud-
ies have shown that many of the topological prop-
erties displayed by these maps (including modular-
ity) can be explained in terms of very simple models.
These models lack an explicit consideration of func-
tionality, thus suggesting that reuse of preexistent el-
ements might be the driving force shaping the orga-
nization of these networks (Solé et al. 2002b; Wagner
2003; Lynch 2007). These results provide evidence for
evolutionary constraints as key to explaining the ob-
served patterns (Alberch 1982; Goodwin 1994; Gould
2002). These models incorporate an essential ingre-
dient of evolution: tinkering (Jacob 1977; Solé et al.
2002a; Wilkins 2007). More precisely, as pointed out by
Francois Jacob, one important source of divergence be-
tween technology and evolution is that natural selection
does not work as an engineer, but rather as a tinkerer.
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Tinkering implies reuse of available structures and de-
signs, whereas technological changes are (in principle)
the result of intentional minds. An intuitive implication
of such difference is that designed objects are free
from tinkering: They can be obtained without reusing
previous components.

As we will see in the next the section, simple growth
models based on duplication and diversification can
explain a large part of the structures found in protein
networks. Duplication events leave a fingerprint in
terms of modular organization in the topological struc-
ture, thus suggesting that (against our intuition) mod-
ularity could emerge through non-adaptive processes.
Moreover, a similar phenomenon is also found in some
technological networks, thus suggesting that some type
of universality is at work. Such universality would ac-
tually be responsible for the convergent evolution of
structural patterns on different scales.

Patterns of Network Organization

In order to illustrate our ideas, we use the protein–
protein interaction map (or proteome) as our case
study. Some of the structures found in these networks

will reappear when we consider technological webs. In
this context, proteome maps will help us understand
the origins of a deep similarity between networks gen-
erated through evolution and their man-made coun-
terparts. An example of protein network is shown in
Fig. 1, where we display the human transcription factor
(TF) network (Rodriguez-Caso et al. 2005). Here nodes
represent TFs and edges linking two nodes indicate a
physical interaction between them. TFs are proteins
that directly interact with DNA, and to some extent
what we display here is the map of the cell “hardware”
that drives DNA dynamics. The links between different
proteins indicate that two given TFs interact physically
at some point, somewhere within the cell. They thus
provide a picture of the cell’s complex machinery. In
this context, the so-called degree k of a given protein is
the number of proteins with which it interacts.

The pattern displayed by this web is fairly typical
and is shared by many other biological, social, and
technological graphs (Buchanan 2003). This particu-
lar network contains N = 230 elements (nodes) and
L = 850 interactions (links), thus corresponding to an
average connectivity (average number of links em-
anating from a node) 〈k〉 = 2L/N = 3.70. This is a
low value, indicating that the network is sparse: the

a b

Fig. 1 Cellular networks are heterogeneous. In a, we display the
human transcription factor (TF) network (Rodriguez-Caso et al.
2005) where each node is a TF and links indicate the presence of
protein–protein interactions. Different modules are indicated by
means of different colors (see text). These modules are typically

organized around hubs. Each TF is a protein that binds to DNA
(an example is shown in b), and thus, the TF network would be a
map of the cell hardware that “reads” the information stored in
the DNA sequence (which would be the software)
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average number of interactions is much smaller than
the maximum possible (kmax = N − 1). But from Fig. 1,
we can clearly appreciate that the number of links
of different proteins is very diverse: Many TFs have
just one or two links, whereas a few—the so-called
hubs—display many connections. The network also dis-
plays correlated subsets of proteins (Fig. 1a) indicated
with different colors associated with the presence of
modules (see below). Hubs and their connections with
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Fig. 2 Statistical patterns of organization in the human tran-
scription factor network (Rodriguez-Caso et al. 2005). In a, we
display the degree distribution P(k) associated with this network
on a log–log scale. A heterogeneous distribution is observed, with
a predominance of elements having one or two links but also
with a few hubs (compare with Fig. 1). The statistics of network
subgraphs shown in b reveal that they follow a decreasing expo-
nential decay, with subgraphs ranked from the most frequent to
the least

other proteins are highlighted in Fig. 1a. Hubs include
the basal transcription initiator, several tumor suppres-
sors (p53, P300) and proto-oncogenes (c-jun, c-myc, or
c-fos). Their topological importance is consistent with
an important role in terms of essential cellular func-
tions. This heterogeneity is captured by the degree
distribution P(k) (Fig. 2a) which gives the probability
that a given TF has k links (Amaral et al. 2000).

These networks are also small worlds (SW). This
interesting behavior relates two apparently antagonis-
tic properties at the local and global scale in sparse
networks. At the local level, it is shown that nodes
in a SW graph are connected to a small number of
neighbors (on average) and they tend to be connected
among them too (i.e., many triangles are observed). On
the other hand, most nodes can be reached from all
others by a small number of hops, also known as the
number of degrees of separation (d). In other words,
the local structure is compatible with very efficient
communication (Watts and Strogatz 1998).

Modules and Motifs

Protein networks display modularity. One way of de-
tecting this is to look at the topology of interactions
among proteins. A module in this context would be
a subset of elements having more connections among
them than with other parts of the web (Wagner et al.
2007). Modularity can be detected and measured in
different ways (Kepes 2007) and allows the detection
of communities of preferentially related nodes. An ex-
ample is shown in Fig. 1a, where proteins belonging
to the same module share a common color. In many
of these networks, modules appear to be organized
around hubs, as can be seen by comparing a and b of
Fig. 1.

Beyond modular patterns, a second level of analysis
considers the frequency of subgraphs of a given size,
also known as subgraph census (see Wasserman and
Faust 1994 and references therein). In Fig. 2b, we dis-
play the subgraph census for n = 4 subgraphs for the
human TF web. In this plot, we show the frequency of
subgraphs ordered by rank, from the most common to
the least. As we can see, their abundance decays quickly
as the graphs become more dense (Solé and Valverde
2007).

These subgraphs have received considerable atten-
tion in relation to the so-called network motifs (Milo
et al. 2002, 2004; Wolf and Arkin 2003). These are
patterns of interconnections occurring in complex net-
works at numbers that are significantly higher than
those expected from a randomized graph having the
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same number of nodes and links (Milo et al. 2002, 2004;
Valverde and Solé 2005a, b). Some subgraphs (mo-
tifs) would be much more common while others (anti-
motifs) would be much less common than expected.
The analysis of their statistical distribution reveals that
each class of natural and artificial network seems to
display a common patterns of motif abundances.

The statistical pattern has been interpreted as func-
tionally meaningful: the higher relevance of a motif
would be tied to a potentially important functional role.
In this perspective, motifs have been proposed as the
minimal building blocks of network complexity (Milo
et al. 2002, 2004). It seems thus reasonable to expect
their abundances to reflect some type of adaptive trait
(Kahstan and Alon 2005). But other analyses do not
support this view (Solé and Valverde 2007). In this
context, a recent study (Mazurie et al. 2005) shows
that network motifs are not subject to any particular
evolutionary pressure to be preserved. The reason is
that most motifs are not found in isolation and are
part of larger aggregates. This is consistent with other
studies indicating that a more appropriate, functionally
meaningful approach requires considering higher-order
interconnection patterns (Dobrin et al. 2004). Actually,
improved understanding of cellular webs has led to
the identification of much larger superstructures, some
of them dubbed with new labels, such as themes and
thematic maps (Zhang et al. 2005).

These studies show that reducing biological com-
plexity to small subsystems of fixed size might not be
possible. On the other hand, cellular networks are not
generated through random processes, and we can ask
how much of the deviations from random expectations
are associated with the rules of network growth. As
shown below, non-adaptive processes might pervade
the origins of both modules and motifs.

Modularity from Tinkering?

How can we incorporate tinkered evolution into a
model of proteome evolution? The simplest approach
is using a duplication–divergence (DD) model (Ohno
1970; Patthy 1999; Wagner 2001; Hogeweg 2002) where
growth takes place through random duplications fol-
lowed by divergence in the redundant genes. Instead of
taking into account many of the underlying complexi-
ties of the process, we will restrict ourselves to a graphic
theoretic description of protein–protein interactions,
as previously followed by several authors (Solé et al.
2002b; Dokholyan et al. 2006; Vázquez et al. 2003;
Pastor-Satorras et al. 2003, Teichmann and Babu 2004;
van Noort et al. 2004; Colizza et al. 2005; Ispolatov et al.

2005; Cordero and Hogeweg 2006; Foster et al. 2006;
see also Koonin et al. 2006)

These models involve tinkering, since duplication is
nothing but reuse of previous parts. In our context, we
also tinker with connections, since every duplication
event implies that previous links are also inherited.
As will be shown below, a very similar mechanism
is at work in technology design. We will use one of
the simplest DD models of protein network evolution
(Vázquez et al. 2003), which involves the following set
of rules, to be applied a given number of times, until N
nodes are present. Assuming that we have a graph of
size n, we iterate the following rules:

1. Duplication: Choose a node vi ∈ V at random and
duplicate it, thus generating a new node vn+1.

2. Link deletion: The new node shares a set of neigh-
boring nodes {v j} with its predecessor. For each
common pair of common links, i.e., ei, j and en+1, j,
we choose one of them and delete it with proba-
bility δ. This rule thus removes (probabilistically)
redundant relations among proteins.

3. Link addition: A link is added among nodes vi and
vn+1 with probability α. This is a small number and
allows new functionalities to emerge by linking the
twin proteins.

This model (and its variants) has been shown to
successfully capture most statistical features displayed
by real protein networks (Vázquez et al. 2003; Rice
et al. 2005; Maere et al. 2005). The model has two
parameters which can be tuned. Moreover, it has been
shown (Wagner 2001) that the rates of link deletion are
large, while new links have a much smaller probability.
An important point to be made is that for large deletion
rates, the system can become disconnected, whereas
for small ones it becomes fully and densely connected.
At intermediate values (consistent with estimations),
sparse networks with most nodes forming a single large
graph are observed. These networks are actually very
similar to those found in their real counterparts (see
Fig. 3a, b). They are small worlds, exhibit the same
heterogeneity, and display hubs. These are not just
qualitative observations: the simulated nets fit measur-
able properties found in protein nets very well.

The surprising similarity between non-functional toy
models and the real protein maps is remarkable. This
supports the idea that the “shapes” of protein maps
result from non-adaptive processes. Such a view is
fully confirmed by the analysis of modularity: Although
modular organization is a desirable and functionally
key property of cellular maps, it can arise as a by-
product of the rules driving network growth. Modular-
ity would be obtained “for free” without a small-scale
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Fig. 3 Modeling tinkered evolution in complex cellular net-
works. Using the rules described in the text, an in silico pro-
teome is obtained (a) displaying all features observed in real
protein interaction networks, including modularity (modules are
indicated by dif ferent colors). Hubs emerge as a consequence of
duplication–divergence rules, and they are also organized as in

the real proteomes. In b, we show some of these hubs and their
connecting nodes in yellow. The similarities are also observed on
a smaller scale when the abundance of subgraphs is measured. In
c, we plot the subgraph census for n = 4 systems, which decays in
the same way as observed in protein maps

tuning of protein–protein interactions. These results
are confirmed by the analysis of motif abundances.

Are Motifs Spandrels?

The previous results indicate that the topological pat-
terns exhibited by protein maps could be a by-product
of the network construction process. When looking
at the network organization, we surely will recognize
some noticeable forms and shapes that can easily be
interpreted as resulting from selective pressures. But
sometimes ordered structures have no adaptive mean-
ing. They are actually examples of what Stephen Jay
Gould and Richard Lewontin called spandrels (Gould
and Lewontin 1979). The term spandrel, borrowed
from the vocabulary of architecture by these authors,
defines the space between two arches or between an
arch and a rectangular enclosure. In evolutionary bi-
ology, a spandrel is a phenotypic characteristic that
evolved as a side effect of a true adaptation. We can
summarize the features of evolutionary spandrels as
follows:

• They are the by-product of building rules.
• They have intrinsic, well-defined, non-random

features.
• Their structure reveals some of the underlying rules

of the system’s construction.

It has been shown (Solé and Valverde 2006, 2007)
that the distribution of subgraphs is also a consequence

of tinkering (see also Banzhaf and Kuo 2004; Kuo
et al. 2006; Knabe et al. 2008). Specifically, if we count
the number of different subgraphs using our previous
model, it can be shown that the same census plot can be
obtained (Fig. 3c). For most parameter combinations,
the shape of this census is the same: an exponential
function with less dense subgraphs being more common
than denser ones. Interestingly, it was observed that
a very good match for four-node subgraphs appears
to occur at parameter values where proteome network
distributions are recovered (Solé and Valverde 2007).
Thus, provided that we tune deletion and addition
rates so that a heterogeneous net is obtained, subgraph
abundances are also fitted.

From the previous definition, motif abundances
might well be the spandrels of network complexity.
Why? They follow the previous list of requirements:

• Their abundance is matched by in silico models
lacking real functionality and are thus a by-product
of the network building rules.

• They exhibit highly non-random features at several
scales, and these are particularly obvious when con-
sidering how motifs form clusters (Fig. 1b).

• The aggregates strongly indicate that duplication–
rewiring processes, which generate the whole struc-
ture, are also responsible for their presence and
specific regularities.

However, this pattern does not rule out an active
role of selection at the lower scale: links need to be
introduced and removed at appropriate rates so that the
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network integrity is maintained. In other words, al-
though modules, motifs, and robustness might be,
to some extent, a by-product of the duplication–
divergence scenario, network connectivity needs to be
properly tuned.

The results reported here with a non-directed model
have been shown to be robust when more detailed im-
plementations are used. When regulatory interactions
are considered using protein interactions matching
binding sites, it has been shown that the abundance of
some well-known motifs (such as feed-forward loops)
is largely a consequence of duplication and divergence
(Cordero and Hogeweg 2006). These in silico results
are consistent with data from transcription networks.

The Engineer as a Tinkerer

Let us go back to our comparison between design
and evolution. Apparently, technological artifacts are
expected to result from a tinkering-free process. It is
actually interesting to see that engineering has been a
source of inspiration for some system biologists who
see biological designs as closely related to engineered
structures (see Lazebnik 2002). Although all of them
agree that there is no intentional design, there is some
belief that structures closely relate to optimal (or nearly
optimal) functions. If the proteome resembles the In-
ternet (for example), the implication would be that they
share common optimality principles of organization.
Some examples support this view. A recent study by
Moses et al. (2008) on the structure of microproces-
sors suggests that they follow similar scaling laws re-
lating energy dissipation and spatial organization. But
if we seek insight from technology, we should first
ask ourselves if technology is really free from con-
straints and tinkered evolution. In this context, it is
worth mentioning that electronic circuits have been
shown to display small-world and scale-free patterns
of organization (Ferrer-Cancho et al. 2001). This is
a surprising result, given the well-known wiring cost
problem affecting circuit designs and the almost two-
dimensional packing of components on a surface. In
spite that the rules of construction are different, the
common pattern of topological organization suggests
(once again) that strong constraints canalize network
architecture. As will be shown below, this seems the
case in large-scale technological networks (Fig. 4).

Computational models of technological innovation
offer a promising approach to the evolution of artifacts.
An example of this approach is the work of Brian
Arthur and Wolfgang Polak. These authors used a
simple evolutionary algorithm to evolve complex elec-

Fig. 4 Network motifs from tinkering. Motifs are identified as
small groups of interacting elements with a well-defined arrange-
ment of links. These links can correspond to physical interactions
among proteins or to regulatory links among genes. In this figure,
gray balls and links indicate units and their interactions, respec-
tively. Starting from the simplest graph (a), we can generate
different motifs by gene duplication (DUP) or link addition
(ADD). Three common motifs found in cellular networks are
highlighted by the colored boxes. Here DUP, NEW, and DE
indicate duplication events, introduction of new links, or their
deletion, respectively

tronic circuits by combination (Arthur and Polak 2006).
Specifically, this work starts using a minimal logic gate,
the so-called NAND gate (Fig. 5a) as the elementary
building block. A previous list of goals is given, defined
as desired computations to be performed. Such goals
allow the definition of a fitness function and selection
of some given designs. The gates are randomly wired
and the resulting circuits tested, so that those that work
better are selected. Selected circuits are then preserved
as new building blocks (Fig. 5b, c), and thus the evolu-
tionary process is carried out by combining more and
more complex subsystems.

The model is successful in generating all desired
computations, although the exact hardware that imple-
ments them is path-dependent: different runs generate
different solutions. In spite of the enormous combina-
torial space to be—in principle—explored, it is remark-
able that complex functions (such as eight-bit adders)
are obtained. Moreover, the final circuits involve some
amount of junk pieces resembling some of the non-
functional structures found in biological systems.

Further, the length of time designs take to evolve
(how fitness changes) indicates that punctuated equi-
librium seems to be an essential ingredient of change.
It is also worth noting that this combinatorial origina-
tion of technological complexity leads to a timeline of
design evolution that cannot be collapsed into a true
evolutionary tree. If we try to draw such a thing, we
end up defining a phylogenetic network, similar to the
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Fig. 5 Starting from a basic logic block, such as a NAND gate
(a), a combination algorithm allows generating more complex
gates which can themselves be used to build further gates. The
two circuits shown in b and c are examples of these evolved
circuits (redrawn from Arthur and Polak 2006). The basic result
of this combinatorial evolution is that more and more complex

computational blocks (indicated as XOR, EQUIV, IMPLY, etc.)
are generated, thus defining a variety of modules. Such modu-
lar organization is a characteristic feature of electronic designs,
where integrated circuits (such as the one shown in d–e) are fixed
combinations of simpler gates

ones associated with prokaryotic evolution (Dagan and
Martin 2009). Due to the widespread role of horizontal
gene transfer, branches in these trees are inevitably
connected through genetic exchange events. In a sen-
tence: if something can be combined, it gets combined.

The previous model illustrates one approach to
evolved systems that is based in simulation. Using a
given set of basic rules and an appropriate definition
of fitness, we can generate complex structures. Brian
Arthur’s view of technological evolution strongly ad-
vocates for combination as the key source of change
(Arthur 2010). In this view, technological designs would
be closer to chemistry than to selection-based evolu-
tionary forces. The latter would be involved as soon
as key ideas are born and applied. And yet, as we
turn our attention to the most important piece of
technology used in our daily lives, the fingerprints of
evolutionary dynamics and in particular tinkering re-
veal unexpected similarities between engineering and
biology.

Tinkering with Software Designs

The Arthur–Polak model deals with a simplified view
of technological change. But it certainly provides proof
of our concept picture. The model generates new struc-
tures by combining of preexisting components, some-
how as technology creates new artifacts by means of
using existing ones. But we can also analyze real designs
by looking at the network structure of some designs and
its evolution through time.

Most previous studies on cultural and technologi-
cal evolution and their similarities have concentrated
mostly on old forms of technology. This includes writ-
ing, steam engines, computers, and other artifacts. In
some cases, it is possible to follow not only how struc-
tures change over time but also how they are linked
through phylogenetic relations (Temkin and Eldredge
2007). However, the current, invisible but most widely
used technological advance is software. Soon after the
first computers were designed, software also emerges
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and, after a delay, starts becoming the key actor for
the computer revolution along with smaller machines.
Software programs perform controlling tasks, which
are executed by means of the underlying hardware.
Thus, software defines the set of logical constraints
acting on a given hardware, seemingly as what happens
between proteins and DNA. In this sense, software
might be a better approach to biological networks and
pathways than hardware (Cardelli 2007). Actually, it
is interesting to see that software and programming
languages have evolved through time-experiencing
life-like patterns of change. These include both grad-
ual changes and horizontal evolution but also sharp
innovations (Sammet 1969). Interestingly, one of the
greatest changes was the transition toward modular
structures, the so-called object-oriented language. In
such a language, the building blocks involve well-
defined, reusable units of programming logic. In this
way, it became possible to build programs composed
of self-sufficient modules (objects), each containing all
the information needed to manipulate its own data
structure.

As it happens with cellular networks, the topology of
software maps is both scale-free and modular (Fig. 6a)
despite the fact that it emerges as the outcome of de-

signed evolution (Myers 2003; Valverde and Solé 2006).
Obviously, there must be a basic building plan toward a
final function or set of functions. The software engineer
foresees the outcome of his work, although big software
systems are in fact created by teams of developers. Each
software engineer has been trained with some specific
design principles (Pressman 2005) that should allow
these systems to be of high quality, easily maintain-
able, faster, and evolvable. But there are a number of
constraints affecting the software building process.
Modularization is present and is the fingerprint of task
allocation within the system: different blocks will be
involved in more specific subfunctions. On the other
hand, increased complexity leads to conflicts between
different subparts. This is reflected for example at the
topological level: small software maps tend to display
a clean tree-like structure, whereas larger systems typ-
ically display much more complex patterns (Valverde
and Sole 2006). But textbooks on software design
principles make no mention of small worlds or scale-
freeness. Actually, some universal patterns shown by
these systems are in conflict with the basic rules of
thumb used in software engineering. The reason for
these patterns and why they seem inevitable stems from
an unexpected actor: tinkering.

Location
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King

is-a

doesfrom/to

at

Location

Movement

Chessmen
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doesfrom/to

at
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Fig. 6 Even technological, design-driven change can be strongly
constrained by tinkered evolution. Software engineering illus-
trates this point very clearly. Software systems can be seen
as complex networks of interacting blocks (a) describing given
structures or functions. These networks are scale free and also
display modularity (indicated by dif ferent colors). In b (upper
plot), we show a small piece of a computer program for playing

chess. Basic nodes include the location of each chessman, its
definition and identity, and the movement. Although each chess-
man is a different component, the logic of relations is conserved
when a code duplication is performed (b, lower) to generate
a new element from a previous one. These duplication events
(followed by rewire) are widespread
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Duplications of software parts is much more com-
mon than one might think. They occur naturally at
the level of code writing, when a given item to be
created shares a number of common features with other
previously created items. They are generally used at
different scales, including large blocks involving mil-
lions of code lines. These blocks typically deal with
some given tasks and define themselves as special sub-
sets within software graphs. Since they are highly elabo-
rated structures, once a given block has been generated,
a large part of its structure might be reused, and it
will. As the system becomes more and more complex,
programmers are more prone to this reuse (known as
cloning) since they know that a given structure already
behaves well. New structures are thus developed within
an increasingly complex and integrated structure where
interdependencies force the reuse of previous parts.
Moreover, empirical analysis of software evolution re-
veals that duplicated code is more stable than non-
duplicated code (Krinke 2008).

An example of small-scale tinkering is illustrated
in Fig. 6b. The nodes and their links correspond to
part of a chessplayer program. Each element on the
chessboard is characterized by its location in space,
its pattern of movement, and its identity both as a
chessman and a special class of it. All these generic
features are required to define each piece and its be-
havior. If we have already written the code describing
a Pawn, generating the new one for King is relatively
easy. First, we clone the Pawn module and afterward
changes are made so that the new chessman is created.
As we would expect, the previous links to the general
definition of chessmen and the movement object are
also cloned. In other words, in order to create a new
class of piece, we can take advantage of the already
defined elements (Valverde and Solé 2005a). But in
many other situations, reuse has to do with the intrinsic
complexity of the system. It has been shown that the
abundance of subgraphs in software networks can be
explained as a result of the rules of network growth
underlying their evolution (Valverde and Solé 2005a,
b). These models are very similar to those described
above in the context of proteome evolution.

If we take two different software projects and follow
in time their evolution, some inevitable regularities
will be found. They always evolve toward small-world,
scale-free structures. On the other hand, the pattern of
change displays universal trends, including an increase
with time in the number of avalanches of modifications
that need to be introduced, which follow a punctuated
equilibrium pattern (Gorshenev and Pismak 2004).
More importantly, the final outcomes of these projects
are large-scale networks displaying very similar quanti-

tative traits, including motif abundances (Valverde and
Solé 2005a, b) and degree distributions. No matter the
different natures of the function performed by each sys-
tem, their structural pattern of organization converges
toward the same, life-like architecture.

Discussion

In this paper, we have presented evidence for non-
adaptive processes prevading the evolution of both
cellular and technological systems. Under tinkered evo-
lution, growing networks spontaneously develop three
key desirable properties: (a) small world organization,
(b) heterogeneity, and (c) modularity. All of them are
a consequence of the fluctuations associated with du-
plication dynamics (Solé et al. 2001), although modu-
larity seems an even more general property of growing
random networks (Guimerà et al. 2002). Protomodules
are thus an inevitable outcome of the growth rules,
suggesting that even modular structures might have
emerged for free (Solé and Valverde 2007). Given the
great advantages provided by modular patterns, such
spontaneous generation of modules would have been
rapidly exploited by natural selection.

The seemingly universal class of patterns generated
by network growth dynamics is fully supported by
the architecture of software networks. Although hu-
man minds are involved (instead of the blind watch-
maker) and software systems are not biological entities
(Nehaniv et al. 2006), tinkering seems to be largely
responsible for the shaping of these large-scale tech-
nologies. Moreover, common terms in software design
include fault-tolerance, reliability, and extensibility, the
last two closely related to the internal evolvability of
the software system. The fact that a simple duplication–
divergence model is able to account for most properties
of software maps (Valverde and Solé 2005a, b) provides
an unexpected twist to Jacob’s views: even the engineer,
who certainly foresees the future, is eventually forced
to tinker.
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